

UNIVERSIDADE FEDERAL DO PARÁ

NÚCLEO DE ECOLOGIA AQUÁTICA E PESCA DA AMAZÔNIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA AQUÁTICA E PESCA – PPGEAP

KERLY CRISTINA MELO PEREIRA

SISTEMÁTICA INTEGRATIVA REVELA A PRESENÇA DE UMA NOVA LINHAGEM CRÍPTICA DENTRO DO COMPLEXO DE ESPÉCIES DA ARRAIA OCELADA *POTAMOTRYGON MOTORO* (MÜLLER & HENLE, 1841) (MYLIOBATIFORMES: POTAMOTRYGONIDAE) NA REGIÃO DA BAIXADA MARANHENSE, NORDESTE DO BRASIL

BELÉM - PARÁ

KERLY CRISTINA MELO PEREIRA

SISTEMÁTICA INTEGRATIVA REVELA A PRESENÇA DE UMA NOVA LINHAGEM CRÍPTICA DENTRO DO COMPLEXO DE ESPÉCIES DA ARRAIA OCELADA *POTAMOTRYGON MOTORO* (MÜLLER & HENLE, 1841) (MYLIOBATIFORMES: POTAMOTRYGONIDAE) NA REGIÃO DA BAIXADA MARANHENSE, NORDESTE DO BRASIL

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Ecologia Aquática e Pesca – PPGEAP, da Universidade Federal do Pará, como requisito para obtenção do título de mestre em Ecologia Aquática e Pesca

Orientador: Dr. João Bráullio de Luna Sales Co-orientador: Dr. Getulio Rincon Filho.

BELÉM -PARÁ 2023

Dados Internacionais de Catalogação na Publicação (CIP) de acordo com ISBD Sistema de Bibliotecas da Universidade Federal do Pará Gerada automaticamente pelo módulo Ficat, mediante os dados fornecidos pelo(a) autor(a)

P436s Pereira, Kerly Cristina Melo.

SISTEMÁTICA INTEGRATIVA REVELA A PRESENÇA DE UMA NOVA LINHAGEM CRÍPTICA DENTRO DO COMPLEXO DE ESPÉCIES DA ARRAIA OCELADA POTAMOTRYGON MOTORO (MÜLLER & HENLE, 1841) (MYLIOBATIFORMES: POTAMOTRYGONIDAE) NA REGIÃO DA BAIXADA MARANHENSE, NORDESTE DO BRASIL / Kerly Cristina Melo Pereira. — 2023. 63 f. : il.

Orientador(a): Prof. Dr. João Bráullio de Luna Sales Coorientador(a): Prof. Dr. Getulio Rincon Filho Dissertação (Mestrado) - Universidade Federal do Pará, Núcleo de Ecologia Aquática e Pesca da Amazônia, Programa de Pós-Graduação em Ecologia Aquática e Pesca, Belém, 2023.

1. Potamotrygoninae. 2. Linhagens crípticas. 3. Conservação. 4. Mearim. 5. Amazônia. I. Título.

CDD 570

KERLY CRISTINA MELO PEREIRA

SISTEMÁTICA INTEGRATIVA REVELA A PRESENÇA DE UMA NOVA LINHAGEM CRÍPTICA DENTRO DO COMPLEXO DE ESPÉCIES DA ARRAIA OCELADA *POTAMOTRYGON MOTORO* (MÜLLER & HENLE, 1841) (MYLIOBATIFORMES: POTAMOTRYGONIDAE) NA REGIÃO DA BAIXADA MARANHENSE, NORDESTE DO BRASIL.

Texto Dissertativo apresentado ao Programa de Pós-Graduação em Ecologia Aquática e Pesca – PPGEAP, da Universidade Federal do Pará, como requisito para obtenção de título de Mestre em Ecologia Aquática e Pesca.

Orientador:

João Broulle de La labo

Prof. Dr. João Bráullio de Luna Sales

(Grupo de Investigação Biológica Integrada - UFPA)

Co-Orientador:

Prof. Dr. Getulio Rincon Filho

(Universidade Federal do Maranhão- UFMA)

Banca avaliadora:

ARCEN ARA DE

Prof. Dr. Marcelo Costa Andrade

(UFMA - Universidade Federal do Maranhão)

Prof. Dr. Luis Fernando da Silva Rodrigues Filho

(UFRA - Universidade Federal Rural da Amazônia)

Prof. Dr. Patrícia Charvet (UFC - Universidade Federal do Ceará)

BELÉM – PA

AGRADECIMENTOS

Agradeço aos meus pais, Kátia e Claudeny, ao meu irmão e a toda minha família. A Deus por ter me dado força e perseverança durante o mestrado.

Agradeço ao Programa de Pós-graduação em Ecologia Aquática e Pesca (PPGEAP-UFPA) pelo curso e a CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) pela concessão da Bolsa de Mestrado.

Ao meu Orientador Dr. João Bráullio de Luna Sales, e ao meu co-orientador, Dr. Getulio Rincon, pela paciência, apoio, sugestões, críticas e café.

Aos colegas do Grupo de Estudos em Biologia Aquática (GEBAQ) pelo auxílio nas coletas, análises e companheirismo. Aos meus colegas do Grupo GIBI, em especial a Bianca Lima, Alan Souza Rodrigues e Fabrício dos Anjos.

À Professora Dr. Raimunda Garcia, que foi minha amiga no projeto extensão "Anjos da Alegria" durante a graduação, que me ajudou a vencer a timidez e mudou minha visão da vida.

Á José Cassimiro, pelo amor, carinho e força.

Aos meus amigos, em especial Carlos Eduardo pelas mil conversas sobre raias, ajuda em campo e análises.

A todos aqueles que tiveram alguma participação neste trabalho, meus sinceros agradecimentos.

DEDICATÓRIA

Aos meus pais Kátia Melo e Claudeny Pereira.

Aos meus avós Raimunda Melo e Antônio Melo (in memoriam).

Aos meus irmãos e familiares,

Dedico.

SUMÁRIO

CAPITULO 1 INTRODUÇÃO GERAL10

DIVERSIDADE DE ARRAIAS DE ÁGUA DOCE DA AMÉRICA DO SUL10

O GÊNERO POTAMOTRYGON E POTAMOTRYGON MOTORO (MÜLLER & HENLE 1841)11

BIODIVERSIDADE DE PEIXES NEOTROPICAIS E HISTÓRICO CRÍPTICO DA FAMÍLIA POTAMOTRYGONIDAE13

TAXONOMIA INTEGRATIVA EM PEIXES NEOTROPICAIS15

JUSTIFICATIVA15

OBJETIVOS16

OBJETIVO GERAL16 OBJETIVOS ESPECÍFICOS 16

REFERÊNCIAS17

CAPÍTULO 2

RESUMO22

ABSTRAT23

INTRODUÇÃO24

MATERIAL E MÉTODOS25

ÁREA DE ESTUDO25

MORFOMETRIA 27

AMOSTRAGEM, EXTRAÇÃO DO DNA E SEQUENCIAMENTO 28

MONTAGEM DO BANCO DE DADOS E ANÁLISES MOLECULARES 29

DELIMITAÇÃO DE ESPÉCIES 30

RESULTADOS E DISCUSSÃO 30

DADOS MOLECULARES
ASPECTO GERAL DO CORPO
DESCRIÇÃO DO COLORIDO
DESCRIÇÃO DO COLORIDO FRESCO E FIXADO
DENTIÇÃO
DENTICULOS
DESCRIÇÃO DO ESQUELETO
DIAGNOSE

AGRADECIMENTOS48 REFERÊNCIAS49 MATERIAL SUPLEMENTAR56

RESUMO

A subfamília Potamotrygoninae (Chondrichthyes: Elasmobranchii) é o único clado existente de elasmobrânquios exclusivos de ambientes de água doce, abrange quatro gêneros e 38 espécies que habitam a maior parte das grandes bacias hidrográficas da América do Sul e apresentam características morfológicas e fisiológicas que estão relacionadas com a sua história evolutiva em ambientes dulcícolas. A arraia-de-fogo Potamotrygon motoro é a espécie mais amplamente distribuída do gênero e ocorre nas bacias hidrográficas dos rios Amazonas, Paraná-Paraguai, Orinoco, Parnaíba e Pindaré-Mearim, incluindo nessa última bacia os lagos de Viana. O presente estudo tem por objetivo utilizar uma abordagem de sistemática integrativa, caracterizar a linhagem arraia de água doce Potamotrygon cf. motoro na bacia dos rios Pindaré-Mearim. Os resultados do presente estudo demonstram que a linhagem de P. motoro que está presente na região dos lagos de Viana é geneticamente distante de sequências de indivíduos da localidade tipo (Rio Paraguai) bem como, forma um clado distinto em relação às sequências genéticas de espécimes inferidas até o momento. É demonstrada a formação de complexos crípticos dentro de algumas linhagens do gênero Potamotrygon, especialmente as espécies que possuem ampla distribuição como P. orbignyi e P. motoro, sugerindo a presença de cinco e quatro linhagens crípticas dentro de cada uma destas espécies, respectivamente. Morfologicamente as arraias dos lagos de Viana diferem de P. motoro no número de dentes, muito maior nas arcadas superior e inferior 37-56/32-69 (n = 15) para fêmeas e 32-46/34-52 (n = 9) para machos, e com dentes proporcionalmente menores, estrutura mais delgada e reta da cartilagem palatoquadrado e na morfologia dos dentículos dérmicos em forma de estrela com seis carenas coronais lisas contínuas, dispostas de forma desigual ao redor da coronal pontiaguda, e predominantemente simples.

Palavras-chave: Potamotrygoninae, linhagens crípticas, conservação, Amazonia.

ABSTRACT

The subfamily Potamotrygoninae (Chondrichthyes: Elasmobranchii) is the only existing clade of elasmobranchs exclusive to freshwater environments. It encompasses four genera and 38 species that inhabit most of the major river basins in South America, exhibiting morphological and physiological characteristics that are related to their evolutionary history in freshwater habitats. The stingray Potamotrygon motoro, is the most widely distributed species within the genus and occurs in the river basins of the Amazon, Paraná-Paraguay, Orinoco, Parnaíba, and Pindaré-Mearim. The authors demonstrate the formation of cryptic complexes within some lineages of the genus Potamotrygon, especially in species with wide distribution, such as P. orbigny and P. motoro, suggesting the presence of five and four cryptic lineages within each of them, respectively. This study aims to use an integrative systematic approach to characterize the lineage of the freshwater stingray Potamotrygon cf. motoro in the Pindaré-Mearim river basin. The results of this study show that genetically, the P. motoro lineage present in the Viana Lake region is genetically distant from sequences of individuals from the type locality (Paraguay River) and forms a distinct clade compared to the genetic sequences of specimens inferred by Fontenelle et al. (2021b). The formation of cryptic complexes is demonstrated within some lineages of the genus Potamotrygon, especially species that have a wide distribution such as P. orbignyi and P. motoro, suggesting the presence of five and four cryptic lineages within each of these species, respectively. Morphologically, lagos de Viana rays differ from P. motoro in the number of teeth, much higher in the upper and lower arches 37-56/32-69 (n = 15) for females and 32-46/34-52 (n = 9) for males, and with proportionally smaller teeth, thinner and straighter structure of the palatoquadrate cartilage and in the morphology of the star-shaped dermal denticles with six continuous smooth coronal carinae, unevenly arranged around the pointed coronal, and predominantly simple.

Keywords: Potamotrygoninae, cryptic lineages, conservation, Amazon.

1. INTRODUÇÃO GERAL

1.1 DIVERSIDADE DE RAIAS DE ÁGUA DOCE DA AMÉRICA DO SUL

A família Potamotrygonidae Garman, 1877 (Chondrichthyes: Elasmobranchii) é composta por duas subfamílias, distribuídas em cinco gêneros reconhecidos sendo atualmente composta por 40 espécies (Carvalho et al., 2016; Fontenelle et al., 2021). As arraias neotropicais de água doce da subfamília Potamotrygoninae são os únicos elasmobrânquios existentes endêmico para ambientes de água doce (Thorson *et al.*, 1983; Rosa, 1985) e são representados por quatro gêneros e 38 espécies: *Paratrygon* Duméril, 1865, *Potamotrygon* Garman, 1877 o gênero mais diverso contendo 33 espécies, e *Plesiotrygon* Rosa, Castello & Thorson, 1987 e *Heliotrygon* Carvalho & Lovejoy, 2011 com duas espécies cada (Rosa et al., 2008; de Carvalho & Lovejoy, 2011; Fontenelle & de Carvalho, 2017; da Silva & Loboda, 2019; Loboda et al., 2021). A subfamília Styracurinae é o grupo irmão marinho das Potamotrygoninae, com duas espécies marinhas do gênero *Styracura*, que ocorrem em águas costeiras (Carvalho et al., 2016).

A distribuição geográfica da subfamília Potamotrygoninae é limitada à região neotropical, e se estende por várias bacias que deságuam no Oceano Atlântico, contudo existem algumas dúvidas a respeito da distribuição do grupo entre as bacias costeiras do rio Parnaíba no nordeste do Brasil e o rio de La Plata. Além disso, os estudos biogeográficos sobre as arraias de água doce neotropicais ainda evidenciam a precariedade do conhecimento sobre a taxonomia e filogenia do grupo, o que acarreta dificuldades para a compreensão histórica da família Potamotrygonidae (Rosa et al., 2010). O Brasil apresenta a maior diversidade de espécies desta família no mundo (Lucifora et al., 2015; Loboda & Silva, 2019; Rincon et al., 2019).

Até pouco tempo atrás, a origem da família no continente sul-americano estava associada às incursões marinhas na porção norte da América do Sul durante o Mioceno (Carvalho et al., 2004; Lovejoy et al., 2006), sendo posteriormente dispersas para outros sistemas aquáticos na América do Sul, enquanto outra teoria defende uma origem mais antiga de fósseis do Eoceno atribuídos a potamotrigonídeos (Bloom & Lovejoy, 2017). Entretanto, recentemente a primeira hipótese foi corroborada como a mais provável (Fontenelle et al., 2021b), com a subsequente diversificação das linhagens ancestrais no sistema Pebas, seguida pela colonização das bacias adjacentes. As arraias da subfamília Potamotrygoninae possuem características morfofisiológicas não encontradas em outros elasmobrânquios devido às várias adaptações sofridas durante a transição de ambiente, sendo assim, incapazes de acumular ureia nos tecidos e possuem uma glândula retal vestigial e considerada não funcional (Thorson, et al., 1983). Desta forma, o processo de osmorregulação acontece da mesma forma dos peixes teleósteos de água doce, e como as arraias encontram-se em balanço negativo de íons, requerem a necessidade de obtenção de sais por vários meios, entre eles a dieta (Duncan, 2016).

A taxonomia e sistemática do grupo tem avançado bastante nos últimos 20 anos, principalmente a partir dos anos 80. A primeira descrição publicada de uma espécie de água doce "Pastenague de Humboldt" (Rolin, 1829) aconteceu após dois séculos do primeiro registro de uma arraia de água doce (Marcgrave, 1648). Posteriormente, a partir dos anos 60, a sistemática do grupo se tornou progressivamente mais complexa, com estabelecimento de novos gêneros e espécies (Rosa et al., 1987; Carvalho & Lovejoy, 2011, Carvalho et al., 2016). Entretanto, Almeida et al. (2008) revisaram a presença das arraias de água doce no estuário amazônico e citaram que mesmo com os avanços nos aspectos sistemáticos/taxonômicos envolvendo estes animais, ainda existem informações confusas, que estão ligadas a descrições incompletas, devido a fatores relacionados à dificuldade de trabalhar com a descrição do grupo.

1.2 O GÊNERO *Potamotrygon* E A ESPÉCIE *Potamotrygon motoro* (MÜLLER & HENLE 1841)

Enquanto os gêneros *Heliotrygon, Paratrygon e Plesiotrygon* pertencem exclusivamente à bacia Amazônica, as arraias do gênero *Potamotrygon* são encontradas em diversas bacias e apresenta um número elevado de espécies quando comparada com os demais gêneros (Rosa, 1985; Carvalho & Lovejoy, 2011). As espécies do gênero são fenotipicamente muito diversas, apresentando padrões de coloração e ocelos dorsais muito variado, bem como o tamanho, existindo espécies com menos de 30 centímetros de largura de disco *Potamotrygon wallacei* (Carvalho, Rosa & Araújo, 2016; Duncan et al., 2017) até espécies com mais de 150 centímetros de largura de disco *Potamotrygon wallacei* (Carvalho, Rosa & Araújo, 2016; Duncan et al., 2017) até espécies com mais de 150 centímetros de largura de disco *Potamotrygon brachyura* (Gunther, 1880) (Rosa et al., 2016; Castello et al., 2017). As espécies apresentaram predação sobre grande variedade de táxons, como peixes, insetos e moluscos (Shibuya et al., 2009; Kolmann, 2016; Rutledge et al., 2019), ocorrendo em uma grande variedade de habitats (Fontenelle et al 2021b).

A arraia-de-fogo *Potamotrygon motoro* é a espécie mais amplamente distribuída do gênero, ocorre nas bacias hidrográficas do Amazonas, Paraná-Paraguai, Orinoco e Pindaré-Mearim (Rosa *et al.*, 2016; Rincon *et al.*, 2019). Esta espécie foi descrita originalmente na bacia do Paraná-Paraguai, sendo caracterizada principalmente por apresentar ocelos amarelos ou laranjas maiores que o diâmetro do olho em um fundo oliváceo-marrom a cinza escuro, ocelos que não se estendem sobre a cauda, dentes relativamente grandes e chatos (Rosa, 1985) sulco labial ausente, uma única fileira de espinhos na cauda, podendo apresentar espinhos acessórios (Rincon, 2006). Loboda & Carvalho (2003) realizaram uma revisão da espécie e apresentaram novas características que a definem com base nos seguintes caracteres: "ocelos presentes no dorso do disco tricolores, bem definidos e bem distribuídos, com diâmetro similar ou maior do que o comprimento do olho; coloração ventral com região central do disco branca e com tonalidades marrom ou cinza presentes nas margens do disco; dentículos dérmicos bem desenvolvidos e com formato estrelado na região central do disco; sulcos labiais ausentes e heterodontia monognática presente nas maxilas superior e inferior nos adultos".

A arraia-de-fogo *Potamotrygon motoro* (Figura 1) apresenta ocorrência no lagos de Viana, que está localizado dentro da Área de Proteção Ambiental da Baixada Maranhense. Estes lagos pertencem a um sistema mais complexo de lagos interligados, com características de lagos de várzea, formado pela inundação das águas do rio Pindaré, afluente da margem esquerda do rio Mearim (Piorski, 2005).

Figura 1: *Potamotrygon motoro* capturada na bacia dos rios Pindaré-Mearim, município de Viana, Maranhão.

Os lagos do município de Viana, apresenta a arraia de água doce da espécie *P. motoro* isoladas dos demais sistemas adjacentes, como a bacia Amazônica e o rio Parnaíba e embora pertençam a uma espécie de arraia com ampla distribuição nas bacias amazônica e Paraná-Paraguai, as particularidades morfológicas dos exemplares das bacias Pindaré/Mearim e Parnaíba ainda permanecem largamente desconhecidas. Apesar de sua singularidade e relevância ictiológica, há apenas uma monografia de conclusão de curso (Pinto, 1987) e dois trabalhos sobre o registro de ocorrência e o dimorfismo sexual da espécie na bacia Pindaré-Mearim (Rincon *et al.*, 2019; Rincon *et al.*, 2020). Contudo, trabalhos como os de Compagno & Cook (1995), Soares (2005) e Loboda & Carvalho (2013) já citavam que havia uma espécie de arraia de água doce no rio Mearim.

1.3 BIODIVERSIDADE DE PEIXES NEOTROPICAIS E HISTÓRICO CRÍPTICO DA FAMÍLIA POTAMOTRYGONIDAE

No que diz respeito à biodiversidade, o continente americano, em especial, a região neotropical, abriga algumas das mais distintas e ricas faunas do mundo, sendo um *hotspot* para muitos grupos diferentes de organismos (Myers et al., 2000; Aleixo, 2002;

Reis et al 2016), em especial o grupo dos peixes, um dos grupos mais megadiversos (van der Sleen & Albert, 2017; de Pinna & Keith, 2019; Gales et al 2022). A fauna ictiológica neotropical é composta por várias espécies atuais que derivam de ancestrais marinhos (Lovejoy et al 2006; Bloom & Lovejoy, 2017), incluindo espécies de arraias, as quais estão contidas na família Potamotrygonidae (Fontenelle et al 2021a).

A monofilia da subfamília Potamotrygoninae é corroborada por estudos anatômicos com morfologia esquelética e tecidos moles (Rosa 1985; Carvalho et al 2004; Carvalho & Lovejoy, 2011) bem como, por revisões moleculares recentes (Fontenelle et al., 2021b). Há, entretanto, um longo histórico de linhagens crípticas dentro de Potamotrygoninae (Rosa 1985; Toffoli et al., 2008; Garcia et al., 2016; Renza-Millán et al., 2019; Loboda et al., 2021; Rizo-Fuentes et al 2021), especialmente para algumas das espécies mais comuns e amplamente distribuídas. Entretanto, Loboda & Carvalho (2013) redesignaram *P. motoro*, baseado em revisão morfológica, como uma espécie endêmica à bacia do rio Paraná-Paraguai e, desta forma, quaisquer espécimes identificados como tal, devem ser considerados como pertencentes às linhagens crípticas dentro de um complexo de espécies.

Fontenelle et al., (2021b) realizaram uma ampla revisão molecular contendo 35 espécies. Os autores demonstraram a formação de complexos crípticos dentro de algumas linhagens do gênero *Potamotrygon*, especialmente as espécies que possuem ampla distribuição, como *P. orbigny* e *P. motoro*, sugerindo a presença de cinco e quatro linhagens crípticas dentro de cada uma destas respectivamente. Mesmo tendo realizado uma ampla amostragem para estas espécies, ainda houve algumas lacunas de amostragem, especialmente para drenagens da região do estado do Maranhão, o qual representa o limite leste da distribuição amazônica.

A bacia do Pindaré-Mearim é isolada de outras bacias próximas, sendo formada da junção das porções inferiores dos rios Pindaré e Mearim, os quais drenam para a baía de São Marcos (Rincon et al., 2019). A região conhecida como "Baixada Maranhense" corresponde a uma série de lagos rasos que se estendem por planícies, mas ainda sofrendo influência de regimes de marés. Esta região é também habitada por uma única linhagem de *Potamotrygon*, atualmente classificada como *Potamotrygon motoro* (Compagno & Cook, 1995; Soares, 2005). A população desta linhagem de *P. motoro* se encontra isolada de conexão com outras bacias e drenagens que eventualmente possuam a presença de

espécies de Potamotrygonineos, fazendo com que a linhagem presente nesta região seja endêmica da baixada maranhense.

1.4 TAXONOMIA INTEGRATIVA EM PEIXES NEOTROPICAIS

A taxonomia integrativa não substitui a taxonomia tradicional, mas adiciona a rotina tradicional e mais lenta da taxonomia (Adams, 2001; Agnarson & Kuntner, 2007) a um conjunto de evidências de diferentes áreas, com genética e morfologia (Schlick-Steiner et al., 2010), fazendo desta forma, um aumento na exigência e rigor de interpretação dos dados. Um dos melhores exemplos deste tipo de abordagem é a capacidade, tanto de descrever e delimitar novas linhagens, quando de reduzir o número de determinadas espécies em grupos taxonômicos anteriormente tidos como muito diversos (Petrusek et al., 2008; Rissler & Apodaca, 2007; Seifert, 2009).

Em estudos com elasmobrânquios, a taxonomia integrativa tem auxiliado em resoluções taxonômicas históricas, como a polifilia da família Dasyatidae (Last et al., 2016), além da descrição e delimitação de várias espécies nos últimos anos (Gabbanelli et al., 2018; Petean et al., 2020; Lim et al., 2022). A técnica também tem sido utilizada nos últimos anos para elucidação de problemas sistemáticos em grupos de peixes neotropicais com histórico taxonômico problemático (Gomes et al., 2015; Ota et al., 2020; Garavello et al., 2021), embora, para grupos como potamotrigonideos, os quais apresentaram alta conservação genética intraespecífica mas padrões policromáticos altamente variados, ainda não existam relatos (Torres et al., 2022].

1. JUSTIFICATIVA

A definição específica de linhagens e resolução de inconsistências sistemáticas dentro de complexo de espécies de *Potamotrygon motoro* é urgente e necessária tendo em vista a ampla abrangência dos complexos crípticos que ainda são classificados como *Potamotrygon* cf. *motoro* na região neotropical. A população presente na região da baixada maranhense não foi alvo de revisões de sistemática integrativa, abordagem esta que pode fornecer evidências a respeito da linhagem de *Potamotrygon* cf. *motoro* presente na bacia do Mearim, evidenciando possivelmente uma linhagem endêmica.

2. OBJETIVOS

3.1 OBJETIVO GERAL

O presente estudo tem por objetivo caracterizar a linhagem arraia de água doce *Potamotrygon* cf. *motoro* na bacia dos rios Pindaré-Mearim utilizando uma abordagem de sistemática integrativa,

3.2 OBJETIVOS ESPECÍFICOS

- Avaliar se a linhagem molecular que ocorre na bacia dos rios Pindaré-Mearim, constitui uma nova linhagem críptica dentro do complexo de espécies de *P*. *motoro*;
- Caracterizar morfologicamente a linhagem presente na região do presente estudo.

Referências

Adams BJ .2001. The species delimitation uncertainty principle . J. Nematol. 33:153–60.

Agnarsson I, Kuntner M. 2007. Taxonomy in a changing world: seeking solutions for a science in crisis. Syst.Biol.56:531–39.

Bloom, D. D., & Lovejoy, N. R. (2017). On the origins of marine-derived freshwater fishes in South America. Journal of Biogeography, 44(9), 1927–1938. https://doi.org/10.1111/jbi.12954

Carvalho, M. R. (2001) Review of: Freshwater Stingrays from South America. Copeia 4:1167-1169.

Carvalho, MR, & Lovejoy, NR (2011). Morfologia e relações filogenéticas de um notável novo gênero e duas novas espécies de raias neotropicais de água doce da bacia amazônica (Chondrichthyes: Potamotrygonidae). Zootaxa , 2776 (1), 13-48.

Charvet-Almeida, P. (2006). História natural e conservação das raias de água doce (Chondrichthyes: Potamotrygonidae), no médio Rio Xingu, área de influência do Projeto Hidrelétrico de Belo Monte (Pará, Brasil). História Natural e Conservação das Raias de Água Doce (Chondrichthyes: Potamotrygonidae), no Médio Rio Xingu, Área de Influência do Projeto Hidrelétrico de Belo Monte (Pará, Brasil).

De Pinna M, Keith P. 2019. Mastiglanis durantoni from French Guyana, a second species in the genus (Siluriformes: Heptapteridae), with a CT scan survey of phylogenetically relevant characters. Cybium: Revue Internationale d'Ichtyologie 43: 125–135.

Duncan, W. L. P. (2016). Ecofisiologia das raias de água doce (Potamotrygonidae): mecanismos de interação organismo-ambiente. XV. Rayas de agua dulce (Potamotrygonidae) de Suramérica. Parte II: Colombia, Brasil, Perú, Bolivia, Paraguay, Uruguay y Argentina, 45-64.

Fontenelle, J. P., Lovejoy, N. R., Kolmann, M. A., & Marques, F. P. (2021). Molecular phylogeny for the Neotropical freshwater stingrays (Myliobatiformes:

Potamotrygoninae) reveals limitations of traditional taxonomy. Biological Journal of the Linnean Society, 134(2), 381-401.

Fontenelle, J. P., Portella Luna Marques, F., Kolmann, M. A., & Lovejoy, N. R. (2021). Biogeography of the Neotropical freshwater stingrays (Myliobatiformes: Potamotrygoninae) reveals effects of continent-scale paleogeographic change and drainage evolution. Journal of Biogeography, 48(6), 1406-1419.

Fontenelle, JP, & De Carvalho, MR (2017). Revisão sistemática do complexo de espécies Potamotrygon scobina Garman, 1913 (Chondrichthyes: Myliobatiformes: Potamotrygonidae), com a descrição de três novas espécies de raias de água doce do Brasil e comentários sobre sua distribuição e biogeografia. Zootaxa , 4310 (1), 1-63.

Gales, S. M., Ready, J. S., Sabaj, M. H., Bernt, M. J., Silva, D. J. F., Oliveira, C., ... & Sales, J. B. L. (2022). Molecular diversity and historical phylogeography of the widespread genus Mastiglanis (Siluriformes: Heptapteridae) based on palaeogeographical events in South America. Biological Journal of the Linnean Society, 135(2), 322-335.

Garcia, D. A., Lasso, C. A., Morales, M., & Caballero, S. J. (2016). Molecular systematics of the freshwater stingrays (Myliobatiformes: Potamotrygonidae) of the Amazon, Orinoco, Magdalena, Esequibo, Caribbean, and Maracaibo basins (Colombia– Venezuela): evidence from three mitochondrial genes. Mitochondrial DNA Part A, 27(6), 4479-4491.

Loboda TS, Carvalho M. 2013. Systematic revision of the Potamotrygon motoro (Muller & Henle, 1841) species complex in the Parana- Paraguay basin, with description of two ocellated species (Chondrichtyes: Myliobatiformes: Potamotrygonidae). Neotrop Ichthyol 11:693–737.

Loboda, T. S., Lasso, C. A., Rosa, R. D. S., & Carvalho, M. R. D. (2021). Two new species of freshwater stingrays of the genus Paratrygon (Chondrichthyes: Potamotrygonidae) from the Orinoco basin, with comments on the taxonomy of Paratrygon aiereba. Neotropical Ichthyology, 19.

19

Lovejoy, N. R., Albert, J. S., & Crampton, W. G. R. (2006). Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes. Journal of South American Earth Sciences, 21(1–2), 5–13. <u>https://doi.org/10.1016/j.jsames.2005.07.009</u>.

Lovejoy, N. R., Albert, J. S., & Crampton, W. G. R. (2006). Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes. Journal of South American Earth Sciences, 21(1–2), 5–13. <u>https://doi.org/10.1016/j.jsames.2005.07.009</u>.

Lucifora, L. O., de Carvalho, M. R., Kyne, P. M., & White, W. T. (2015). Freshwater sharks and rays. Current Biology, 25(20), R971-R973.

N. Myers, R.A. Mittermeier, C.G. Mittermeier, G.A.B. DaFonseca, J. Kent. Biodiversity hotspots for conservation priorities. Nature, 403 (2000), pp. 853-858.

PINTO, J. A. Biologia de Potamotrygon motoro (Pisces: Rajiformes) do complexo lagunar de Viana-Maranhão. Monografia (Bacharelado em Biologia) Centro de Ciências da Saúde - Universidade Federal do Maranhão, São Luis, 1987.

Renza-Millán, M., Lasso, C. A., Morales-Betancourt, M. A., Villa, F., & Caballero, S. (2019). Mitochondrial DNA diversity and population structure of the ocellate freshwater stingray Potamotrygon motoro (Müller & Henle, 1841)(Myliobatiformes: Potamotrygonidae) in the Colombian Amazon and Orinoco Basins. Mitochondrial DNA Part A, 30(3), 466-473.

RIBEIRO, Daniel Toffoli. História evolutiva de espécies do gênero Potamotrygon Garman, 1877 (Potamotrygonidae) na Bacia Amazônica. 2006.

Rincon Filho, G. (2006). Aspectos taxonômicos, alimentação e reprodução da raia de água doce Potamotrygon orbignyi (Castelnau)(Elasmobranchii: Potamotrygonidae) no Rio Paraná-Tocantins.

Rincon, G., Pereira, K. C., Santos, C. E. S., Wosnick, N., Nunes, A. R. O., Leite, R. D., & Nunes, J. L. S. (2019). Notes on the occurrence and gender-based morphological aspects of Potamotrygon motoro (Elasmobranchii: Potamotrygonidae) in the complex of the Viana lake system-Maranhão, Brazil. Revista Nordestina de Biologia, 27(1).

Rincon, G., Soares, C. E. S., Pereira, K. M., Wosnick, N., & Nunes, J. (2019). Dimorfismo sexual da raia de água doce Potamotrygon motoro dos lagos de Viana, Maranhão. Tópicos Integrados de Zoologia. Ponta Grossa: Editora Atena, 15-25.

Rizo-Fuentes, M. A., Correa-Cárdenas, C. A., Lasso, C. A., Morales-Betancourt, M. A., Barragán-Barrera, D. C., & Caballero, S. (2021). Phylogeography, genetic diversity and population structure of the freshwater stingray, Paratrygon aiereba (Müller & Henle, 1841)(Myliobatiformes: Potamotrygonidae) in the Colombian Amazon and Orinoco basins. Mitochondrial DNA Part A, 32(1), 20-33.

Rosa, R. D. S. (1985). A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae)(batoidei, myliobatiformes, phylogeny, biogeography) (Doctoral dissertation, The College of William and Mary).

Rosa, R. S., Araújo, M. L. G., & Carvalho, M. R. (2016). Potamotrygon wallacei. XV. Rayas de Agua Dulce (Potamotrygonidae) de Suramérica. Parte II. Colombia, Brasil, Perú, Bolivia, Paraguay, Uruguay y Argentina. Instituto Humboldt, pp. 167–172.

Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chainterminating inhibitors. Proceedings of the national academy of sciences, 74(12), 5463-5467.

Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., & Crozier,R. H. (2010). Integrative taxonomy: a multisource approach to exploring biodiversity.Annual review of entomology, 55, 421-438.

Seifert, B. (2009). Cryptic species in ants (Hymenoptera: Formicidae) revisited: we need a change in the alpha-taxonomic approach. Myrmecological News, 12, 149-166.

Thorson TB, Langhammer JK, Oetinger MI. 1983. Reproduction and development of the South American freshwater stingrays, Potamotrygon circularis and P. motoro. Environmental Biology of Fishes 9: 3–24.

van der Sleen P, Albert JS, eds. 2017. Field guide to the fishes of the Amazon, Orinoco, and Guianas, Vol. 115. Princeton, New Jersey, USA: Princeton University Press.

Capítulo 2

Artigo em elaboração

Formatado de acordo com as normas da revista PLOS ONE (https://journals.plos.org/plosone/)

SISTEMÁTICA INTEGRATIVA REVELA A PRESENÇA DE UMA NOVA LINHAGEM CRÍPTICA DENTRO DO COMPLEXO DE ESPÉCIES DA ARRAIA OCELADA *POTAMOTRYGON MOTORO* (MÜLLER & HENLE, 1841) (MYLIOBATIFORMES: POTAMOTRYGONIDAE) NA REGIÃO DA BAIXADA MARANHENSE, NORDESTE DO BRASIL

Kerly C. M. Pereira¹, João Bráullio L. Sales^{1*}, Getulio Rincon Filho²

¹ Grupo de Investigação Biológica Integrada, Centro de Estudos Avançados da Biodiversidade (CEABIO), Universidade Federal do Pará, Av. Perimetral, 01, PCT-Guamá, Terreno 11. CEP: 66075750, Belém, PA, Brasil.

² Professor do Curso de Engenharia de Pesca da Universidade Federal do Maranhão –
 UFMA, Maranhão, Brasil.

Corresponding Author: João Bráullio de Luna Sales

e-mail: braullio@ufpa.br

Tel.: +55 91 98731 7337.

Resumo

A costa amazônica brasileira, que se estende dos estados do Amapá ao Maranhão, é drenada por uma série de rios de pequeno a médio porte da bacia amazônica. O Mearim é uma bacia formada pela junção dos rios Pindaré e Mearim em sua porção inferior. Ao longo dos rios Pindaré e Mearim há uma única espécie registrada de arraia de água doce identificada como Potamotrygon motoro. Embora os espécimes tenham sido depositados em instituições de pesquisa, a maioria desses espécimes foi capturada na bacia amazônica e seus afluentes diretos ou ao longo da bacia do rio Panará-Paraguai. Portanto, existe uma lacuna de informações sobre o P. motoro da bacia do rio Pindaré-Mearim. O presente estudo tem por objetivo, através do uso de taxonomia integrativa, fazer uma revisão molecular e morfológica da linhagem de P. motoro que está presente no rio Pindaré-Mirim. Um fragmento do gene COI foi amplificado de 11 espécimes de P. motoro. Adicionalmente sequências do mesmo marcador referente a várias linhagens de Potamotrigonideos foram baixadas do portal genebank e implementados no banco de dados. Com este banco molecular, foram realizadas reconstruções filogenéticas e análises de delimitação de espécies. Aqui são apresentados novos dados sobre a morfologia geral de P. motoro, enfatizando a coloração, dentição, dentículos dérmicos e descrição do esqueleto. Os resultados moleculares indicam que a linhagem presente no Pindaré-Mirim constituiu um clado geneticamente distinto de P. motoro tipo, sendo mais proximamente relacionada a indivíduos provenientes sendo estes proveniente dos rios Abacaxis, Purus, Tapajós, Negro e Orinoco.

Palavras-chave: Potamotrygoninae, Taxonomia, Espécies Crípticas; Endemismo; Conservação.

Abstract

The Brazilian Amazonian coast, which extends from the states of Amapá to Maranhão, is drained by a series of small to medium-sized rivers of the Amazon basin. The Mearim is an basin formed by the junction of the Pindaré and Mearim rivers in its lower portion. Along the Pindaré and Mearim rivers, there is a single recorded species of freshwater stingray identified as *Potamotrygon motoro*. Although specimens have been deposited in research institutions, most of these specimens were captured in the Amazon basin and its direct tributaries or along the Panará-Paraguay river basin. Therefore, there is an information gap about P. motoro from the Pindaré-Mearim river basin. The present study aims to conduct a molecular and morphological review of the P. motoro lineage present in the Pindaré-Mirim river using integrative taxonomy. A fragment of the COI gene was amplified from 11 P. motoro specimens. Additionally, sequences of the same marker referring to various Potamotrigonid lineages were downloaded from the genebank portal and implemented in the database. With this molecular database, phylogenetic reconstructions and species delimitation analyses were performed. Here, we present new data on the general morphology of *P. motoro*, emphasizing coloration, dentition, dermal denticles, and skeletal description. The molecular results indicate that the lineage present in the Pindaré-Mirim constitutes a genetically distinct clade from the typical P. motoro, being more closely related to individuals from the Abacaxis, Purus, Tapajós, Negro, and Orinoco rivers.

Keywords: Potamotrygonidae; Taxonomy; Cryptic Species; Endemism; Conservation;

Introdução

A família Potamotrygonidae Garman, 1877 (Chondrichthyes: Elasmobranchii) é composta por duas subfamílias, distribuídas em cinco gêneros reconhecidos, sendo atualmente composta por 40 espécies [1,2]. As arraias neotropicais de água doce da subfamília Potamotrygoninae perfazem o único grupo de elasmobrânquios existentes exclusivos para ambientes de água doce [3, 4] e são representados por quatro gêneros e 38 espécies: *Paratrygon* Duméril, 1865, *Potamotrygon* Garman, 1877, o gênero mais diverso contendo 33 espécies, e *Plesiotrygon* Rosa, Castello & Thorson, 1987 e *Heliotrygon* Carvalho & Lovejoy, 2011 com duas espécies cada [5, 6, 7, 8, 9].

Descrita originalmente da bacia do Paraná-Paraguai em meados do século XIX, *Potamotrygon motoro* (Müller & Henle, 1841) é uma das primeiras espécies da família Potamotrygoninae a ser descrita, apresenta a maior distribuição geográfica entre as arraias de água doce neotropicais, ocorrendo nas principais bacias da América do Sul, Amazônica, Paraná-Paraguai e Orinoco. Desde que foi descoberta ocorrendo em outras bacias além da Paraná-Paraguai, *P. motoro* sempre levantou dúvidas taxonômicas entre vários autores. Loboda [10] abordou a questão através da revisão morfológica de exemplares de várias localidades da bacia Amazônica, a fim de complementar um estudo inicial de 2006. Entretanto, recentemente Loboda & Carvalho [11] redesignaram *P. motoro*, baseado em revisão morfológica, como uma espécie endêmica à bacia do rio Paraná-Paraguai e, desta forma, quaisquer espécimes identificados como tal, devem ser considerados como pertencentes à linhagens crípticas dentro de um complexo de espécies.

Fontenelle et al., [2] realizaram uma ampla revisão molecular contendo 35 espécies. Os autores demonstram a formação de complexos crípticos dentro de algumas linhagens do gênero *Potamotrygon*, especialmente as espécies que possuem ampla distribuição, como *P. orbigny* e *P. motoro*, sugerindo a presença de cinco e quatro linhagens crípticas dentro de cada uma destas respectivamente. Mesmo sendo realizado uma ampla amostragem para estas espécies, ainda houve algumas lacunas de amostragem, especialmente para drenagens da região do estado do Maranhão, o qual representa o limite leste da distribuição amazônica.

Taxonomia integrativa não substitui a taxonomia tradicional, mas adiciona a rotina tradicional e mais lenta da taxonomia [12, 13] a um conjunto de evidências de

diferentes áreas, com genética e morfologia [14], fazendo desta forma, um aumento na exigência e rigor de interpretação dos dados. Um dos melhores exemplos deste tipo de abordagem é a capacidade, tanto de descrever e delimitar novas linhagens, quando de reduzir o número de determinadas espécies em grupos taxonômicos anteriormente tidos como muito diversos [14, 15, 16].

Em estudos com elasmobrânquios, a taxonomia integrativa tem auxiliado em resoluções taxonômicas históricas, como a polifilia da família Dasyatidae [17], além da descrição e delimitação de várias espécies nos últimos anos [18, 19, 20]. A técnica também tem sido utilizada nos últimos anos para elucidação de problemas sistemáticos em grupos de peixes neotropicais com histórico taxonômico problemático [21, 22, 23], embora, para grupos como potamotrigonineos, os quais apresentaram alta conservação genética intraespecífica mas padrões policromáticos altamente variados, ainda não existam relatos [24].

A arraia de água doce de Viana *P. motoro* é a única arraia de água doce dos lagos de Viana e a única espécie reconhecida nas bacias dos rios Pindaré e Mearim. Esta arraia foi historicamente identificada genericamente pelo colorido, sem uma análise morfológica profunda. Loboda [10] faz uma primeira análise morfológica de um único exemplar (Fêmea adulta de 285 mm de largura de disco-LD (exemplar MZUSP-51676) de *P. motoro* da bacia Pindaré/Mearim e o identifica como *P. motoro* baseado no padrão do colorido e em morfometria [10]. Rosa [25] apresenta uma chave de identificação de *Potamotrygon* e distingue *P. motoro* da bacia Pindaré/Mearim apresentando apenas características do colorido dos animais, mas não especifica quais exemplares foram analisados [25]. Sendo assim, o objetivo do presente estudo é, através de sistemática integrativa, caracterizar a linhagem de *Potamotrygon* que ocorre na região a bacia do Pindaré/Mearim e adicionalmente, revelar a sua posição filogenética em relação a outras linhagens do gênero.

Materiais e métodos

Área de Estudo

Todos os espécimes foram capturados nos lagos que fazem parte da porção inferior da bacia do rio Pindaré durante os anos de 2018 e 2022 (Figura 1). A bacia dos rios Pindaré-Mearim está inclusa na Baixada Maranhense, limita-se ao norte com o Oceano Atlântico, ao sul com a região dos Cocais, a oeste com a região da amazônica e a leste com o cerrado. A região da Baixada Maranhense é considerada um grande e complexo sistema de planícies de nível de base, com as distribuições de águas e sedimentos desde os divisores de águas regionais até as depressões preenchidas por águas: os lagos da Baixada, implicando na formatação de diferentes topografias [26].

Figura 1: Identificação da área do município de Viana e área dos lagos de Viana e Aquari na bacia dos rios Pindaré-Mearim, Maranhão.

O rio Pindaré, afluente da margem esquerda do rio Mearim, caracterizado pela estação chuvosa (janeiro a junho) quando rios e lagos perenes extravasam, transformando-se em extensos lagos rasos, e pelo período de águas baixas (junho a dezembro), onde ocorre a concentração de material orgânico na água e aumento da floração de algas e da produtividade de peixes [27]. O município de Viana possui dois principais lagos que compreendem os sistemas de ambientes lacustres, que correspondem a duas reentrâncias da extensa região dos rios Pindaré e Mearim, o lago de Viana e o lago de Aquari (Figura 1), sendo que os lagos são interligados pelo igarapé do Engenho [28].

Morfometria

Os exemplares (n=39) foram capturados entre os anos de 2017 e 2022, sendo 21 fêmeas com larguras de disco (LD) variando de 137 a 613 mm e 18 machos com larguras de disco de 90 a 447 mm (Dados suplementares 1). A presente descrição se baseia no conjunto de exemplares analisados e não, necessariamente, em um único exemplar.

Todas as medidas morfométricas seguiram Rosa [4] modificado na inclusão das seguintes medidas: largura do disco nos olhos (linha transversal do disco passando pela margem anterior dos olhos), largura do disco na origem das nadadeiras pélvicas, focinho à 1ª fenda branquial, boca à 1ª fenda branquial, comprimento da abertura cloacal, base da nadadeira pélvica, comprimento da cauda da margem posterior do disco até a inserção do ferrão, comprimento do clásper interno, comprimento da cauda dorsal e comprimento pré-pélvico. A morfologia do dente e da espinulação seguiu Deynat e Séret [29].

As medições dos espécimes adultos foram realizadas usando um paquímetro digital com precisão de 0,01 mm: comprimento total (ct): distância entre a ponta do focinho à ponta da cauda; largura do disco (ld): medida tirada da porção mais larga do disco; largura do disco aos olhos (ldo): medida tirada da porção localizada na direção dos olhos; largura do disco na origem das nadadeiras pélvicas (ldon): medida tirada da porção localizada na direção das nadadeiras pélvicas; comprimento do disco (cd): distância entre a ponta do focinho e a margem posterior do disco; comprimento interno do disco (cid): distância entre a ponta do focinho e a axila da nadadeira peitoral; comprimento do olho (do): distância entre as margens anterior e posterior da órbita; comprimento espiracular (ce): distância entre as margens anterior e posterior do espiráculo; largura interocular (lio): distância entre as margens posteriores dos olhos; largura interespiracular (lie): distância entre as margens posteriores dos espiráculos; comprimento pré-ocular (cpo): distância entre a ponta do focinho e o olho; largura da cauda na base (lcb): medida da porção mais larga da cauda entre as inserções das peitorais; largura da cauda no espinho (lce): medida na região da origem do ferrão; altura da cauda na base (acb): altura da porção entre as inserções das peitorais; comprimento do espinho-serrilhado (ferrão) (ces): distância entre a inserção e a ponta do espinho-serrilhado; boca escapulocoracoide (be): distância entre a boca e a cartilagem escapulocoracoide; boca cloaca (bc): distancia da boca a margem anterior da cloaca; boca 1ªfenda branquial (bf): distância da boca a 1º fenda branquial; focinho 1ª fenda branquial (ffb): distância do focinho a 1º fenda branquial; cloaca ao ferrão caudal (cfc): distância da cloaca ao ferrão; comprimento pré-cloacal (pc): distância entre a ponta do focinho e a cloaca; comprimento da abertura cloacal: distância entre a

margem posterior e anterior da cloaca; comprimento pré-oral (cpo): distância entre a ponta do focinho e a margem anterior da boca; comprimento pré-narial (cpn): distância entre a ponta do focinho e a narina; comprimento do cesto branquial (ccb): distância entre a primeira e quinta fendas branquiais; largura do cesto branquial (lcb): distância entre 1^a' s fendas branquiais; largura da boca (lb): distância entre as margens da boca; comprimento da narina (ln): distância entre as margens anterior e posterior da narina; largura internarial (lin): menor distância entre as narinas; comprimento da cauda (cc): medida tirada entre o início da cauda a ponta da cauda; largura da nadadeira pélvica (lnp): largura da margem posterior da pélvica; comprimento da nadadeira pélvica (cnp): comprimento da margem anterior da pélvica; comprimento da base da nadadeira pélvica (cbnp): comprimento da base da nadadeira pélvica, indo de uma ponta final da nadeira a outra; comprimento do clasper (cclpr): distância entre a margem posterior da nadadeira pélvica e a ponta do clásper; comprimento da cauda desde a margem posterior do disco à inserção do espinho-serrilhado (ccmpie): medida entre a margem posterior da cloaca e a origem do espinho-serrilhado; comprimento pré-pélvico (cpp): distância entre a ponta do focinho e a região pélvica; comprimento da cauda desde a cloaca (ccc): medida entre a margem posterior da cloaca e a ponta da cauda.

Todos os espécimes foram marcados e guardados em tanques de solução de formalina e depositados na coleção de peixes da UFMA-Pinheiro. Três espécimes foram depositados na Coleção de Peixes da Universidade Federal do Maranhão (CPUFMA-3161, três espécimes machos com 180 mm, 290 mm e 350 de largura de disco, capturados no mesmo cruzeiro, 30/09/2017).

Amostragem, Extração do DNA e Sequenciamento

No presente estudo, foram coletados 39 indivíduos, onde 17 indivíduos foram utilizados para os procedimentos moleculares. Todas as amostras foram coletadas sob a licença emitida pelo Instituto Chico Mendes de Conservação da Biodiversidade-ICMBio (SisBio Nº 58240-1) e aprovado pela Comissão de Ética em Uso de Animais (23115.014176/2018-94).

De cada exemplar foi retirado um pequeno pedaço de tecido muscular, sendo posteriormente acondicionado em tubo Eppendorf contendo etanol absoluto. Para a extração de DNA, foi utilizado o método CTAB modificado de Doyle & Doyle (1987)

[30] modificado para 128 utilizando apenas clorofórmio e álcool isoamílico (CIAA) na proporção de 1:1. Uma porção do gene mitocondrial Citocromo oxidase subunidade I (COI) foi amplificada através dos pares de primers Fish F1 e Fish R2 bem como o procolo de amplificação das reações em cadeia de polimerase [31]. Cada reação de PCR apresentou um volume final de 25μ L, contendo 2 mM de dNTPs, Tampão (5x), 2,4 mM de MgCl2, 4 μ L de DNA molde, 1 μ L de cada primer, 0,2 μ L de Taq polimerase e 10,4 μ L de água ultrapura.

As purificações das PCR's foram feitas utilizando isopropanol, posteriormente, foram feitas duas lavagens com etanol 70%, em seguida todas as amostras foram ressuspendidas com 20 μ L de água UP (Ultrapura), finalmente armazenadas no freezer à -20°. A reação de sequenciamento foi efetuada pelo método de dideoxinucleotídeos terminais [32] usando reagentes do kit BigDye Terminator v3.1 Cycle Sequencing (Applied Biosystems/Life Technologies) e as sequências de DNA foram obtidas no sequenciador automático modelo SeqStudio, da Applied Biosystems.

Montagem do Banco de Dados e Análises Moleculares

As sequências de DNA obtidas no presente estudo foram alinhadas com auxílio da ferramenta de alinhamento automática CLUSTAL W [33] implementada no programa BioEdit versão 7.0.9.1 [34]. Posteriormente, as sequências foram conferidas manualmente na busca de possíveis erros do alinhamento automático. Com o intuito de estimar se a linhagens obtida no presente estudo é geneticamente similar a outras linhagens de *Potamotrygon* analisadas anteriormente, nossas sequências foram submetidas ao portal Genbank, (https://www.ncbi.nlm.nih.gov/) através da ferramenta de comparação de nucleotídeos BLASTN.

O banco de dados genéticos do trabalho de Fontenelle [2] foi baixado e implementado a nossas sequências, gerando um banco de dados final com 210 sequências (Dados suplementares 2). Para o direcionamento do grupo interno, sequências de *Himantura fai* (Jordan & Seale, 1906) e *Brevitrygon imbricata* (Bloch & Schneider, 1801) foram utilizadas como grupos externos. Duas metodologias filogenéticas distintas foram utilizadas no presente estudo. Uma Árvore de Máxima Verossimilhança foi estimada usando o IQ-TREE multi core, versão 1.6.8 (Nguyen et al 2015) [35], usando o

ModelFinder [36] para seleção do melhor modelo evolutivo, utilizando 1000 réplicas de *bootstrap* ultra rápido [37].

Para a árvore de Inferência Bayesiana foi utilizado o programa Mr. Bayes 3.2 [38]. As análises foram realizadas com duas corridas através do algoritmo de MCMC, tendo cada corrida 3.0 X 10⁸ gerações, tendo o *burn-in* referente a 10% das árvores iniciais as quais foram descartadas. As probabilidades bayesianas a posteriori serão definidas através do consenso de 80% (0.8), sendo cada árvore amostrada a cada 1000 gerações. As edições das árvores filogenéticas foram realizadas FigTree v. 1.4.4 [39].

Delimitação de Espécies

No intuito de verificar a validade genética de todas as linhagens dentro do complexo de espécies de *P*. cf. *motoro*, três metodologias de delimitação de espécie foram realizadas. Inicialmente, foi utilizado o método de *threshold* implementado na ferramenta de delimitação AGBD (Automatic Barcoding Gap Discovery) [40]. Adicionalmente, dois métodos baseados em coalescência também foram feitos. Análises de GMYC (General Mixed Yule Coalescent) [41] e bPTP (Bayesian implementation of PTP) models [42] foram feitas através do servidor de internet (http://species.hits.org). Para a análise de GMYC, uma árvore ultramérica sem outgroups foi gerada no programa BEAST v. 1.7.4 [43] como árvore guia para a análise. Uma árvore de ML foi construída no PhyML 3.1 [44] para ser utilizada como árvore guia para a análise de bPTP.

Resultados e Discussão

Dados moleculares

Tanto as topologias de inferência bayesiana quanto máxima verossimilhança, foram concordantes no posicionamento dos grupos internos. Devido a isto, apenas a topologia de inferência bayesiana será demonstrada com os respectivos valores de suporte para ambas as análises nos nós. Todos os indivíduos coletados no presente estudo foram recuperados em clado geneticamente distintos em relação às sequências de *P. motoro* provenientes da bacia do rio Paraguay (Figura 2). Adicionalmente, quando comparados a outras linhagens de *P. motoro* já registradas em estudos anteriores, as amostras do presente estudo novamente ficam contidas em um clado distinto, onde, mesmo com

valores de suporte moderadamente baixos, para os dois métodos filogenéticos utilizados. Adicionalmente, a linhagem presente nos lagos de Viana também foi recuperada como distinta em duas (GMYC e bPTP), das três metodologias de delimitação de espécie utilizadas. A linhagem recuperada no presente estudo foi filogeneticamente mais próxima a indivíduos que compõe outro complexo críptico dentro de *P. motoro*, sendo estes proveniente dos rios Abacaxis, Purus, Tapajós, Negro e Orinoco.

Figura 2: Cladograma filogenético de inferência bayesiana mostrando o posicionamento da linhagem de *Potamotrygon* cf. *motoro* da bacia do Pindaré/Mearim. Apenas valores de suporte iguais ou maiores a 80% (0.8) são demonstrados na árvore.

O método tradicional de taxonomia empregado em arraias de água doce é, muitas vezes, limitado devido ao fato da utilização de caracteres fenotípicos, morfológicos e osteológicos [45], o que representa um desafio para espécies de arraias de água doce, pois, estas espécies apresentaram uma alta diferenciação cromática além de estruturas ósseas que restringe a descrição de potenciais novas espécies [46, 47]. Neste sentido, tem se usado nos últimos 20 anos métodos moleculares, como a iniciativa do código de barras de DNA, como ferramenta para delimitação e identificação de novas espécies [48, 49].

Neste sentido, há duas premissas básicas a do código de barras de DNA: 1monofilia das espécies alvo em relação ao marcador utilizado, e 2-divergência genética intraespecífica menor do que diferenças genéticas entre espécies. Entretanto, para espécies com divergência recente bem como ausência de comparação entre espécies irmãs (proximamente relacionadas) além de ausência e amostragem espacial para espécies amplamente diversas, existe uma alta tendência em subestimar a variabilidade intraespecífica [50, 51]. O próprio uso do gene Citocromo oxidase I para alguns grupos taxonômicos já foi alvo de críticas pela sua ausência de resolução para separar espécies em alguns grupos taxonômicos [52, 53, 54], incluindo arraias de água doce [55].

Uma forma de contornar os problemas dos dois campos de pesquisa, é a taxonomia integrativa, a qual, combina dados morfológicos e moleculares, além de outros tipos de dados se estiverem disponíveis (ecológicos, comportamentais etc.) para descrição e delimitação de espécies [56, 57, 58] e desta forma, contornando as problemáticas de cada um dos métodos. Este tipo de inferência já foi usado com eficiência em estudos com elasmobrânquios [59, 17, 19].

Fontenelle et al (2021b) [2] realizaram uma ampla revisão filogenética contendo várias espécies de Potamotrygonideos. Estes autores indicaram que existem dentro de *P. motoro* ao menos 4 linhagens evolutivas distintas devido ao fato de que, tanto *P. motoro* quanto *P. orbigny*, não terem sido recuperadas como linhagens monofiléticas. Adicionalmente, *P. motoro* foi recentemente redescrita como espécie apenas presente na bacia dos rios Paraná e Paraguai [11].

Os resultados do presente estudo demonstram que a linhagem de *P. motoro* que está presente na região dos lagos Viana e Aquari é geneticamente distante de sequências de indivíduos da localidade tipo (rio Paraguai) bem como, forma um clado distinto em relação às sequências genéticas de espécimes inferidas por Fontenelle et al (2021b) [2].

Aspecto Geral do Corpo

A presente análise foi feita com base nas médias das proporções para machos e fêmeas, em conjunto. A arraia apresenta grande porte, onde fêmeas são muito maiores que os machos; maior fêmea com comprimento total- ct = 1042 mm e largura de discold = 613 mm (figura 1 e figura 2).

O disco sub-circular, com largura máxima de disco sobre a linha média do comprimento do disco a levemente ovalado, com largura máxima na primeira metade do comprimento do disco; quase tão largo quanto longo, com a largura do disco cabendo de 0,88 a 1,01 vezes dentro do seu comprimento; margem anterior amplamente convexa e se estendendo suavemente até o ápice da LD; margem posterior fortemente convexa, terminando em ângulo levemente agudo com a margem livre e afastada da cauda a uma distância igual à metade do comprimento da margem livre. Cabeça relativamente pequena em proporção ao disco, baixa e pouco evidente; olhos relativamente pequenos, menores em comprimento que o comprimento dos espiráculos e cerca de 2,56 a 9,75 vezes dentro da distância interocular e de 4,56 a 11,64 vezes dentro do comprimento pré-ocular. Espiráculos grandes, romboides a triangulares com bordas lisas e posicionados imediatamente posteriores aos olhos ou se estendendo até; comprimento do espiráculo 0,82 a 4,00 vezes o comprimento do olho e 1,85 a 6,18 vezes dentro do comprimento interespiracular.

Figura 1: Exemplar de *P. motoro*, fêmea. (A) dorsal e (B) ventral.

Figura 2: Exemplar de *P. motoro*, macho. (A) dorsal e (B) ventral.

As nadadeiras pélvicas são triangulares com a margem anterior levemente convexa e o ápice largamente arredondado; margem posterior reta, visível dorsalmente

ao se estender levemente além da borda posterior do disco; base da nadadeira larga e com forte articulação, musculatura e cartilagens associadas bem desenvolvidas e perceptíveis ao ser manipulada.

Os clásperes em machos adultos são relativamente curtos e robustos; sulco do clásper distinto e se estendendo dorso-medialmente, desde próximo de sua inserção até metade de seu comprimento, quando se afasta da margem interna do pseudosifão dorsal e segue em direção à margem externa do clásper até a sua expansão e a formação do hipopilo. Comprimento do pseudosifão dorsal 3,14 vezes dentro do comprimento do clásper desde sua inserção na nadadeira pélvica e posicionado dorso-medialmente no terço terminal do clásper; pseudosifão ventral posicionado postero-lateralmente no terço terminal da margem externa do clásper e se estendendo até a sua margem posterior.

Figura 3: detalhe do clásper esquerdo. (a) – SC: sulco do clásper; HIP: hipopilo; pd: pseudosifão dorsal. (B) componentes do esqueleto do clásper, vista dorsal do clásper esquerdo articulado na cintura pélvica – CP: cintura pélvic; BP: basipterígio; CL: Clásper.

Cauda relativamente curta em indivíduos adultos, menor que o comprimento interno do disco, 0,66 a 2,35 vezes dentro comprimento interno do disco, e com pequena, e fortemente variável, extensão posterior à ponta do espinho; base de largura variável, principalmente nas fêmeas, como resultado do esforço reprodutivo e acúmulo de reservas na cauda; largura da cauda na base cabendo entre 0,86 e 3,58 vezes dentro do comprimento pré-ocular. Quilha caudal dorsal e ventral bem desenvolvidas e progressivamente maiores a partir da origem em direção à ponta da cauda; origem da quilha caudal dorsal imediatamente posterior à ponta do espinho-serrilhado; origem da quilha caudal ventral anterior à origem da quilha caudal dorsal, quase na mesma linha de inserção do espinho-serrilhado. Quilhas laterais na cauda bem distintas e se estendendo da base da cauda até a linha do ponto de inserção do espinho. A cauda é ovalada, deprimida dorso-ventralmente em corte transversal, e progressivamente se torna comprimida lateralmente a partir da inserção do espinho até a sua extremidade posterior.

A linha mediana de espinhos estendendo-se desde a metade do comprimento da margem livre da nadadeira peitoral, em alguns espécimes ligeiramente anterior, até a base do espinho-serrilhado; frequentemente uma única linha de espinhos recurvados posteriormente com ocasionais espinhos irregulares. Espinhos dorsolaterais menores na cauda ocorrem como aumento transitório de dentículos, distribuídos aleatoriamente e direcionados dorsalmente (Figura 4).

Figura 4: Vista dorsal da cauda, com espinhos pontiagudos da fileira dorsal da cauda e espinho-serrilhado.

Ventralmente as feições visíveis são as narinas, a boca, o cesto branquial e a cloaca. A cortina nasal é larga distalmente, trapezóide, mas não recobre a boca se

estendendo somente à borda anterior da placa dentária superior; margens laterais retas e margem posterior frangeada. Abertura de entrada da narina formada pela cobertura parcial da narina pela cortina nasal; aberturas tão longas quanto ou ligeiramente mais curtas que a cortina nasal, em formato de fenda longilínea, acompanhando as margens laterais das cortinas nasais e com bordas externas e posteriores levemente elevadas.

A boca é larga, quase tão larga quanto a largura máxima das narinas, sem sulcos labiais, sinuosa e com dentes sinfisiais da placa dentária superior expostos; boca, quando aberta, ampla, internamente mais larga que as placas dentárias; cortina oral frangeada e interna à placa dentária do palatoquadrado e correspondendo à ³/₄ de sua largura; cinco papilas orais dispostas no assoalho da boca, imediatamente internas à placa dentária, três centralizadas e duas laterais, uma a cada lado.

Cesto branquial levemente convexo na sua margem externa; fendas branquiais onduladas; largura do cesto branquial 2,76 a 5,61 vezes dentro da largura de disco e 0,95 a 1,78 vezes dentro do comprimento pré-branquial (focinho 10 fenda branquial).

Cloaca ovalada a elipsóide na primeira metade do comprimento da margem anterior da nadadeira pélvica, comprimento pré-cloacal cerca de 1,06 a 1,22 vezes dentro da largura de disco e a fenda cloacal cerca de 7,04 a 36 vezes dentro do comprimento pré-cloacal.

Descrição do Colorido Fresco e Fixado

O colorido é variável ao longo do crescimento com ocelos variando de tamanho, número e padrão ao longo do corpo; animais mais jovens apresentando ocelos maiores e numerosos com a tendência de se tornarem proporcionalmente menores nos exemplares maiores. Exemplares neonatos e jovens com colorido mais simples, com ocelos predominantemente bi-coloridos (um anel preto com um spot central marrom claro levemente alaranjado) arranjados em um padrão de ocelos maiores sobre o centro do disco e diminuindo de tamanho em direção às bordas arranjados em círculos concêntricos semiestruturados. O colorido de fundo é marrom, mais escuro sobre o centro do disco tendendo a clarear em direção às bordas. Os ocelos dispostos nos círculos mais externos, próximos da borda do disco, são mais pálidos e menores, próximos à metade do diâmetro dos ocelos internos. Nadadeiras pélvicas dorsalmente marrom claro com eventuais ocelos distribuídos aleatoriamente. Base da cauda dorsalmente coberta por trabéculas marrom claras margeadas por distinta faixa cinza escuro que se torna preta a partir da linha da origem do espinho até a ponta da cauda. Essas trabéculas diminuem de tamanho da base da cauda à inserção do espinho, onde as trabéculas desaparecem, permanecendo ocasionais spots marrom claros disformes e menores que as trabéculas da base da cauda. Disco ventralmente branco a creme claro tendendo a creme acinzentado em direção às bordas do disco, com uma mancha central escura e disforme, não maior que a abertura da cloaca, localizada na região central da barra da cintura peitoral e demarcando o ponto de absorção da vesícula vitelínica externa. Nadadeiras pélvicas com porção médio-posterior das margens anteriores e ápices acinzentados. Cauda ventralmente branca acinzentada na base tendendo a cinza escuro progressivamente em direção à ponta da cauda, com eventuais manchas laterais alternadas que não se estendem ventralmente até a linha mediana da cauda.

As arraias apresentam o colorido variável com diversificado padrão, mas aparentemente recaindo sobre o padrão CD1 e CV1 descrito por Loboda [10] e, portanto, dificilmente poderá ser usado para distinguir as arraias *P. motoro* de Viana entre os padrões de coloridos conhecidos.

O padrão de coloração em jovens adultos, apresenta o colorido da dorsal do disco recoberto por ocelos bem desenvolvidos, iguais em tamanho ou maiores que os olhos, bicoloridos com um spot central amarelo e margeado por um anel preto largo levemente difuso em sua margem externa, quase da mesma largura que o diâmetro do spot central. Os spots centrais são maiores e podem apresentar um leve padrão a formar círculos concêntricos ou não, mas os spots localizados nas margens do disco apresentam maior tendência a formar anéis concêntricos e a diminuir de tamanho em direção às margens; usualmente formando dois a três círculos concêntricos. Sobre os olhos e espiráculos há uma maior concentração de spots menores que o diâmetro do olho, normalmente um par sobre os olhos. O colorido do fundo é marrom acinzentado claro a marrom acinzentado escuro, se estendendo sobre o disco, nadadeiras pélvicas e cauda até o ponto de origem do espinho, onde se torna preta até a ponta da cauda. O dorso das nadadeiras pélvicas apresenta pequenos spots mais concentrados sobre a margem posterior e eventuais spots aleatórios sobre a nadadeira. A base da cauda apresenta spots que se deformam progressivamente em vermiculações dispostas dorso-lateralmente; posteriormente, a partir da inserção do espinho, o colorido da cauda se torna preto com eventuais spots amarelos em padrões duplos a cada lado da cauda. O ventre desses animais é predominantemente branco ou creme claro; posteriormente a partir da linha das narinas, as margens do disco se tornam cinza claro tendendo a cinza escuro em direção às bordas e às margens posteriores do disco. As nadadeiras pélvicas apresentam um colorido branco levemente cinza predominante; a margem anterior e ápice são cinza escuro. O ventre da cauda é cinza escuro demarcado por manchas esbranquiçadas que se concentram na base da cauda.

Em exemplares adultos maiores e de grande porte, o fundo do colorido dorsal é marrom acinzentado a marrom acinzentado com ocelos dispersos em espaçamentos maiores, com apenas um a dois círculos concêntricos de ocelos progressivamente menores em direção à margem do disco; ocelos compostos por spots amarelos rodeados por anel preto difuso; ocelos menores sobre os olhos e ao redor dos espiráculos iguais em tamanho ou menores que os olhos. Os ocelos, progressivamente menores, se distribuem na base dorsal da cauda em número reduzido e não se estendendo posteriormente além de um comprimento equivalente à largura da base. O ventre é predominante branco com eventuais manchas acinzentadas disformes sobre as fendas branquiais; um spot cinza irregular escuro a preto é visível sobre a margem posterior da barra escápulo-coracóide demarcando a região de absorção da vesícula vitelínica externa ao longo da fase embrionária. A borda do disco em frente ao focinho apresenta manchas brancoacinzentadas que se estendem eventualmente, ao longo da borda, e se afastando do focinho; a borda do disco, a partir do focinho, apresenta uma faixa acinzentada progressivamente mais larga, que se estende da margem anterior até a base da cauda, igualmente dos dois lados do disco, a partir de uma distância entre a origem dessas faixas equivalente à distância interbranquial na margem anterior do disco; a largura máxima dessa faixa equivale a metade do comprimento da margem anterior da nadadeira pélvica. A nadadeira pélvica é branca na sua base e sobre a cloaca, se tornando acinzentada a partir da metade do comprimento da margem anterior e se estendendo sobre a margem posterior e eventualmente sobre os cláspers, que são sempre completamente marrom-acinzentados e eventualmente podem apresentar spots amarelados dorsalmente. A base da cauda é branco-acinzentada com manchas cinza escuro dispersas aleatoriamente, tornando-se progressivamente mais escura posteriormente a partir de um comprimento equivalente à largura da base da cauda e preta a partir do ponto de inserção do espinho em direção à ponta da cauda.

O disco dorsalmente marrom-oliva ou marrom-escuro a marrom-acinzentado escuro, coberto por ocelos amarelos a alaranjados, às vezes tricolores, circundados por um anel enegrecido; dois ou três círculos concêntricos de ocelos aumentando progressivamente de externos para internos. Os olhos podem estar rodeados por dois ou três pares de pequenos ocelos; geralmente um par medialmente anterior, um par sobre e um par posterior aos olhos, mas esses ocelos podem estar distribuídos na superfície inferior dos olhos. Os espiráculos não apresentam o mesmo padrão circundante dos olhos, mas a válvula espiracular tem um ou dois pares de pequenos ocelos que se estendem até a borda dos espiráculos. Espécimes maiores, especialmente fêmeas, apresentam uma distribuição aleatória de ocelos proporcionalmente menores - ocelos de diâmetro do olho - em um padrão espaçado, frequentemente dividido em dois ou três pequenos ocelos e um anel enegrecido menos conspícuo a indistinto. Ocelos restritos à base da cauda, não estendendo-se à margem posterior das nadadeiras pélvicas. Cauda com a mesma cor de fundo do disco, às vezes com pequenas manchas amareladas espalhadas nas laterais, dividindo-se e minguando antes da linha de base do ferrão, onde desaparecem. As barbatanas pélvicas têm uma versão desbotada do padrão de cor do disco.

Descrição do Esqueleto

O neurocrânio da *P. motoro* de Viana é quase tão largo quanto longo; possui cápsulas nasais elipsóides, aproximadamente duas vezes mais largas do que longas, separadas por septo nasal delgado e demarcadas anteriormente por suave indentação mediana; dorsalmente as cápsulas não alteram a topografia cranial e ventralmente elevam-se da placa basal de forma demarcada e destacando-se na topografia ventral. Os processos pré-orbitais projetam-se látero-posteriormente, apresentam base larga, margem anterior reta e margem posterior côncava formando a margem anterior da cresta supraorbital. Cresta supraorbital semi-ovalada, estendendo por 1/4 do comprimento do neurocrânio. Processo supraorbital triangular, bem delineado e distinto, posicionado na porção distal da cresta supraorbital. Processo pós-orbital projetando-se látero-anteriormente, retangular, totalmente hialino e desprovido de calcificação na porção distal. O neurocrânio afunila posteriormente aos processos pós-orbitais, sem topografia distinta até a margem posterior, região occipital, largamente tomada pelo forâmen magno levemente ovalado, margeado lateralmente pelos forâmens do nervo vago. Superfície dorsal do crânio largamente coberta pelas fontanelas pré-cerebral e frontoparietal que

juntas cobrem aproximadamente 2/3 do comprimento do neurocrânio; fontanela précerebral ovalada, mais larga que longa e posicionada no primeiro terço do comprimento do neurocrânio; fontanela frontoparietal em formato de fechadura, alargada anteriormente e afunilando progressivamente com uma constrição mediana; as duas fontanelas estão separadas pela barra epifisial incompleta (Figura 5).

Figura 5: Dorsal do esqueleto de *P. motoro*, excluída a cintura pélvica. a - coluna vertebral pós cartilagem sinarcual; b - elementos esqueletais da cintura peitoral; c - raios do propterígio, mesopterígio e metapterígio; d - largura cranial; e - comprimento do sinarcual; f - neurocrânio.

Figura 6: Vista ventral de cintura pélvica e clásper esquerdo de *P. motoro* dos lagos de Viana. Componentes do esqueleto do clásper de *Potamotrygon motoro*, vista dorsal do clásper esquerdo articulado na cintura pélvica. PPP - processo pré-pélvico, BP - barra puboisquiádica, PLPP - processo lateral pré-pélvico, B1 - cartilagem basal 1, B2 - cartilagem basal 2, Ax - cartilagem axial, Bt - cartilagem beta, Mv - cartilagem marginal ventral, Md - cartilagem marginal dorsal, Tv - cartilagem terminal ventral, CC - comprimento do clásper.

As cartilagens maxilares são bem desenvolvidas e protráteis através de uma sequência articular de cartilagens que as conecta com o neurocrânio: neurocrâniocartilagem hiomandibulares-cartilagens angulares-cartilagens maxilares (Figura 7). Cartilagens maxilares compostas por cartilagem de Meckel e palatoquadrado; cartilagem de Meckel mais desenvolvida e robusta que o palatoquadrado, larga e robusta, com processos laterais arqueados dorsalmente onde articulam com o palatoquadrado, e postero-lateralmente com a cartilagem angular anterior. Palatoquadrado mais reto e delgado que a cartilagem de Meckel.

Figura 7: As cartilagens maxilares da *P. motoro*. Superior - palatoquadrado; Inferior - cartilagem de Meckel.

Dentículos

A dorsal do disco é coberta por dentículos dérmicos em forma de estrela distribuídos uniformemente, mas com dentículos crescentes da borda do disco em direção à área central. As bordas das regiões do disco e espiráculo-olho são cobertas por dentículos menores e multicuspidados substituindo abruptamente para os dentículos dérmicos em forma de estrela.

Em relação aos dentículos dérmicos sobre a região dorsal mediana do disco, eles apresentam forma de estrela com seis carenas coronais lisas contínuas, dispostas de forma desigual ao redor da coronal pontiaguda, e predominantemente simples ou com uma ou duas carenas coronais lisas ocasionalmente bifurcadas (Figura 8).

Figura 8: Detalhe dos dentículos dérmicos estrelados, fêmea adulta. (A) detalhe dos dentículos na região central do disco; (B) detalhe de um dos dentículos mostrando as carenas coronais lisas (cc) e placa coronal pontiaguda (cp).

Dentição

A mandíbula inferior com dentes molariformes mais uniformes, mas nas fileiras centrais dos machos são de cúspide única, enquanto os dentes laterais e posteriores são molariformes rombóides. Espécimes imaturos com dentes molariformes uniformes e sem dimorfismo ou heterodontia evidentes.

Nos exemplares adultos da arraia, os dentes em quincunx ao longo dos maxilares com dimorfismo sexual distinto, heterodontia monognática e dignatica. Mandíbula superior disposta em três regiões distintas para ambos os sexos, central, intermediária e posterior, mas bem mais evidente nas fêmeas; fêmeas com dentes molariformes rombóides nas fileiras centrais, mudando abruptamente de tamanho e forma para hexagonal nas fileiras intermediárias e mudando novamente para dentes rombóides nas fileiras posteriores; machos com dentes com coroas lanceoladas e cúspides únicas nas fileiras centrais, mudando abruptamente de forma (hexagonal) e tamanho nas fileiras intermediárias e retornando a rombóide nas fileiras posteriores (Figura 9).

As arraias *Potamotrygon motoro* dos lagos de Viana diferem dos demais exemplares da mesma espécie ao longo da bacia Amazônica e da bacia Paraná/Paraguai no número e tamanho dos dentes nas arcadas superior e inferior, que são mais numerosos e proporcionalmente menores nos exemplares de Viana, com fórmula dentária que variaram de 37-56/32-69 (n = 15) para fêmeas e 32-46/34-52 (n = 9) para machos com evidente tendência de aumento ao longo do crescimento do animal.

Figura 9: Variação da morfologia dentária em adulto macho (superior) e adulto fêmea (inferior), em *P. motoro*.

Diagnose

A arraia de água doce de Viana *P. motoro* é a única arraia de água doce dos lagos de Viana e a única espécie reconhecida nas bacias dos rios Pindaré e Mearim. Esta arraia foi historicamente identificada genericamente pelo colorido, sem uma análise morfológica profunda. Loboda [10] faz uma primeira análise morfológica de um único exemplar (Fêmea adulta de 285 mm de largura de disco-LD, exemplar MZUSP-51676) de *P. motoro* da bacia Pindaré/Mearim e o identifica como *P. motoro* baseado no padrão do colorido e em morfometria [10, pgs. 155 e 156). Rosa [11] apresenta uma chave de identificação de *Potamotrygon* e distingue *P. motoro* da bacia Pindaré/Mearim considerando apenas características do colorido dos animais, mas não especifica quais exemplares foram analisados.

As arraias *Potamotrygon motoro* dos lagos de Viana diferem dos demais exemplares da mesma espécie ao longo da bacia Amazônica e da bacia Paraná/Paraguai (Figura 10) no número e tamanho dos dentes nas arcadas superior e inferior, que são mais numerosos e proporcionalmente menores nos exemplares de Viana, com fórmulas dentárias que variaram de 37-56/32-69 (n = 15) para fêmeas e 32-46/34-52 (n = 9) para machos com evidente tendência de aumento ao longo do crescimento do animal. Os dentes apresentam topografia rômbica, mais largos que longos, no que diferem dos exemplares das demais bacias que apresentam dentição mais longa que larga, maiores, quase o dobro do tamanho dos exemplares da lagos de Viana. Dentículos dérmicos sobre a região dorsal mediana do disco em forma de estrela com seis carenas coronais lisas contínuas, dispostas de forma desigual ao redor da coronal pontiaguda, e predominantemente simples ou com uma ou duas carenas coronais lisas ocasionalmente bifurcadas.

Figura 10: Vista dorsal (A) e ventral (B) do lectótipo de *Potamotyrgon motoro* (ZMB4662, fêmea juvenil, 183 mm LD), obtida no rio Cuiabá, bacia do Paraná- Paraguai, localidade-tipo da espécie. Fonte: Retirado de Loboda (2010) [10].

Embora o colorido em espécies de Potamotrygon seja largamente utilizado como característica diagnóstica [4, 7, 8, 9, 10, 11, 15], sua validade e a verdadeira extensão de sua utilização têm sido pouco discutidas. Embora se reconheça a presença de exemplares híbridos na aquariofilia de arraias de água doce e até mesmo na natureza [18], e se reconheça o desconhecimento acerca da variabilidade de coloridos a que uma espécie possa expressar, fragilizando assim a interpretação taxonômica fortemente embasada na descrição dos coloridos nesses animais [2], a literatura evidencia a contínua

superestimação dessa característica em detrimento das demais características morfológicas nas descrições de novas espécies e nas propostas de chaves de identificação.

Conclusão

A *Potamotrygon* cf. *motoro* presente na bacia do Mearim apresenta características morfológicas tais como os dentes e dentículos dérmicos que as distinguem dos demais exemplares de *P. motoro*. O padrão de cores é uma característica altamente variável dentro da *P. motoro*, e não distingue as arraias de Viana entre os padrões de coloridos conhecidos. É importante o uso da morfologia na descoberta de diversidade críptica, já que dissecações e inspeção minuciosa colaboram com a identificação de novas espécies. Os exemplares de *P. motoro* de Viana pertence a um clado geneticamente distintos em relação às sequências de *P. motoro* provenientes da bacia do rio Paraguay. A taxonomia integrativa, a qual, combina dados morfológicos e moleculares é ideal para solucionar as dúvidas existentes dentro das espécies de arraias de água doce.

Agradecimentos

O presente trabalho foi realizado através de apoio financeiro mediante bolsa de estudos da CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) e apoio para campo da Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão (FAPEMA Processo UNIVERSAL-01350/18).

Referências

- Carvalho, M. D., Loboda, TS, & Silva, JPCB (2016). Uma nova subfamília, Styracurinae, e um novo gênero, Styracura, para Himantura schmardae (Werner, 1904) e Himantura pacifica (Beebe & Tee-Van, 1941) (Chondrichthyes: Myliobatiformes). Zootaxa, 4175 (3), 201-221.
- Fontenelle, J. P., Lovejoy, N. R., Kolmann, M. A., & Marques, F. P. (2021). Molecular phylogeny for the Neotropical freshwater stingrays (Myliobatiformes: Potamotrygoninae) reveals limitations of traditional taxonomy. *Biological Journal of the Linnean Society*, 134(2), 381-401.
- Thorson TB, Langhammer JK, Oetinger MI. 1983. Reproduction and development of the South American freshwater stingrays, Potamotrygon circularis and P. motoro. Environmental Biology of Fishes 9: 3–24.
- Rosa, R. D. S. (1985). A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography) (Doctoral dissertation, The College of William and Mary).
- Rosa, R. S., & Lima, F. C. (2008). Os peixes brasileiros ameaçados de extinção. Livro vermelho da fauna brasileira ameaçada de extinção, 2, 9-19.
- De Carvalho, MR, & Lovejoy, NR (2011). Morfologia e relações filogenéticas de um notável novo gênero e duas novas espécies de raias neotropicais de água doce da bacia amazônica (Chondrichthyes: Potamotrygonidae). Zootaxa, 2776 (1), 13-48.
- Fontenelle, JP, & De Carvalho, MR (2017). Revisão sistemática do complexo de espécies Potamotrygon scobina Garman, 1913 (Chondrichthyes: Myliobatiformes: Potamotrygonidae), com a descrição de três novas espécies de raias de água doce do Brasil e comentários sobre sua distribuição e biogeografia. Zootaxa, 4310 (1), 1-63.
- Silva JPCB, Loboda TS (2019). Potamotrygon marquesi, a new species of Neotropical freshwater stingray (Potamotrygonidae) from the Brazilian Amazon Basin. Journal of Fish Biology 95: 594–612.
- 9. Loboda, T. S., Lasso, C. A., Rosa, R. D. S., & Carvalho, M. R. D. (2021). Two new species of freshwater stingrays of the genus Paratrygon (Chondrichthyes:

Potamotrygonidae) from the Orinoco basin, with comments on the taxonomy of Paratrygon aiereba. *Neotropical Ichthyology*, *19*.

- Loboda, T. S. 2010. Revisão taxonômica e morfológica de Potamotrygon motoro (Müller & Henle, 1841) na bacia Amazônica (Chondrichthyes:Myliobatiformes: Potamotrygonidae). Unpublished M.Sc. Dissertation, Instituto de Biociências da Universidade de São Paulo, São Paulo, 305p.
- 11. Loboda, T. S. & de Carvalho, M. R. 2013. Systematic revision of the Potamotrygon motoro (Müller & Henle, 1841) species complex in the Paraná-Paraguay basin, with description of two new ocellated species (Chondrichthyes: Myliobatiformes: Potamotrygonidae). Neotropical Ichthyology, 11(4):693-737.
- Adams BJ .2001.The species delimitation uncertainty principle . J. Nematol.33:153–60.
- 13. Agnarsson I, Kuntner M. 2007. Taxonomy in a changing world: seeking solutions for a science in crisis. Syst.Biol.56:531–39.
- Petrusek, A., Hobæk, A., Nilssen, J. P., Skage, M., ČErný, M., Brede, N., & Schwenk, K. (2008). A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda). *Zoologica Scripta*, 37(5), 507-519.
- 15. Rissler, L. J., & Apodaca, J. J. (2007). Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). *Systematic biology*, 56(6), 924-942.
- Seifert, B. (2009). Cryptic species in ants (Hymenoptera: Formicidae) revisited: we need a change in the alpha-taxonomic approach. *Myrmecological News*, *12*, 149-166.
- 17. Last, P. R., Naylor, G. J., & Manjaji-Matsumoto, B. M. (2016). A revised classification of the family Dasyatidae (Chondrichthyes: Myliobatiformes) based on new morphological and molecular insights. Zootaxa, 4139(3), 345-368.
- Gabbanelli, V., de Astarloa, J. M. D., Gonzalez-Castro, M., Vazquez, D. M., & Mabragaña, E. (2018). Almost a century of oblivion: Integrative taxonomy allows the resurrection of the longnose skate Zearaja brevicaudata (Marini, 1933)(Rajiformes; Rajidae). Comptes Rendus Biologies, 341(9-10), 454-470.
- 19. Petean, F. F., Naylor, G. J., & Lima, S. M. (2020). Integrative taxonomy identifies a new stingray species of the genus Hypanus Rafinesque, 1818 (Dasyatidae,

Myliobatiformes), from the Tropical Southwestern Atlantic. Journal of Fish Biology, 97(4), 1120-1142.

- Lim, K. C., White, W. T., Then, A. Y., Naylor, G. J., Arunrugstichai, S., & Loh, K. H. (2022). Integrated taxonomy revealed genetic differences in morphologically similar and non-sympatric Scoliodon macrorhynchos and S. laticaudus. Animals, 12(6), 681.
- Gomes, L. C., Pessali, T. C., Sales, N. G., Pompeu, P. S., & Carvalho, D. C. (2015). Integrative taxonomy detects cryptic and overlooked fish species in a neotropical river basin. Genetica, 143, 581-588.
- Ota, R. P., Machado, V. N., Andrade, M. C., Collins, R. A., Farias, I. P., & Hrbek, T. (2020). Integrative taxonomy reveals a new species of pacu (Characiformes: Serrasalmidae: Myloplus) from the Brazilian Amazon. Neotropical Ichthyology, 18.
- Garavello, J. C., Ramirez, J. L., Oliveira, A. K. D., Britski, H. A., Birindelli, J. L., & Galetti Jr, P. M. (2021). Integrative taxonomy reveals a new species of Neotropical headstanding fish in genus Schizodon (Characiformes: Anostomidae). Neotropical Ichthyology, 19.
- 24. Torres, Y., Faria, V. V., & Charvet, P. (2022). Current status and future perspectives of Neotropical freshwater stingrays (Potamotrygoninae, Myliobatiformes) genetics. Environmental Biology of Fishes, 105(8), 1111-1127.
- 25. Rosa, R. Claves para la identificación de las rayas de agua dulce (Potamotrygonidae). Pp. 119-121. In: Rayas de agua dulce (Potamotrygonidae) de Suramérica. Parte I. Colombia, Venezuela, Ecuador, Perú, Brasil, Guyana, Surinam y Guayana Francesa: diversidad, bioecología, uso y conservación. / Carlos A. Lasso [et. al] editores; Serie Recursos Hidrobiológicos y Pesqueros Continentales de Colombia, IX. -- Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 2013.
- 26. Soares, Éden. Peixes do Mearim. Instituto Geia, 2005.
- 27. Piorski, N. M., Alves, J. D. R. L., Machado, M. R. B., & Correia, M. M. F. (2005). Alimentação e ecomorfologia de duas espécies de piranhas (Characiformes: Characidae) do lago de Viana, estado do Maranhão, Brasil. Acta Amazonica, 35, 63-70.
- Franco, J. R. C. (2008). Sistema lacustre vianense: ensaios de modelos conceituais para os lagos do município de Viana-Maranhão.

- Deynat, P. P., & Séret, B. (1996). Le revêtement cutané des raies (Chondrichthyes, Elasmobranchii, Batoidea). I-Morphologie et arrangement des denticules cutanés. In Annales des sciences naturelles. Zoologie et biologie animale (Vol. 17, No. 2, pp. 65-83).
- Doyle, JJ (1987). Doyle. Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue," Photochemical Bulletin, 19, 11-15.
- WARD, Robert D. et al. DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society B: Biological Sciences, v. 360, n. 1462, p. 1847-1857, 2005.
- Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chainterminating inhibitors. Proceedings of the national academy of sciences, 74(12), 5463-5467.
- 33. Thompson, J. D; Gibson, T. J.; Plewniak, F.; Jeanmougin, F., Higgins, D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25; 4876–4882. 1997.
- Hall, T. A. 1999. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41; 95-98.
- 35. Nguyen, L.-T., Schmidt, H.A., von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. https://doi.org/10.1093/molbev/msu300.
- ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Meth. 14, 587–589. <u>https://doi.org/10.1038/nmeth.4285</u>
- 37. Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., Vinh, L.S., 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522. https://doi.org/10.1093/molbev/msx281.
- 38. RONQUIST, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., ... & Huelsenbeck, J. P. MrBayes 3.2: inferência filogenética bayesiana eficiente e escolha de modelo em um grande espaço de modelo. Biologia sistemática, v. 61, n. 3, pág. 539-542, 2012.
- 39. RAMBAUT, A.; DRUMMOND, A. J. Tracer v1. 5 [http://beast. bio. ed. ac. uk/Tracer]. 2009.

- Puillandre, N., Lambert, A., Brouillet, S., Achaz, G., 2012. ABGD, automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21 (8), 1864– 1877.
- 41. Fujisawa, T., Barraclough, T.G., 2013. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Syst. Biol. 62 (5), 707–724.
- Zhang, J., Kapli, P., Pavlidis, P., Stamatakis, A., 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29 (22), 2869–2876.
- 43. Drummond, A.J., Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7 (1), 214.
- 44. Guidon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordjik, W., Gascuel, O., 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59 (3), 307. https://doi.org/10.1093/sysbio/ syq010.
- 45. Rizo-Fuentes, MA, Correa-Cárdenas, CA, Lasso, CA, Morales-Betancourt, MA, Barragán-Barrera, DC, & Caballero, S. (2021). Filogeografia, diversidade genética e estrutura populacional da raia de água doce Paratrygon aiereba (Müller & Henle, 1841) (Myliobatiformes: Potamotrygonidae) nas bacias da Amazônia colombiana e do Orinoco. DNA mitocondrial Parte A, 32 (1), 20-33.
- Carvalho, M. R. (2001) Review of: Freshwater Stingrays from South America. Copeia 4:1167-1169.
- 47. Garcia, D. A., Lasso, C. A., Morales, M., & Caballero, S. J. (2016). Molecular systematics of the freshwater stingrays (Myliobatiformes: Potamotrygonidae) of the Amazon, Orinoco, Magdalena, Esequibo, Caribbean, and Maracaibo basins (Colombia–Venezuela): evidence from three mitochondrial genes. *Mitochondrial DNA Part A*, 27(6), 4479-4491.
- 48. Hebert, PD, Ratnasingham, S., & De Waard, JR (2003). Código de barras da vida animal: divergências da subunidade 1 da citocromo c oxidase entre espécies intimamente relacionadas. Anais da Royal Society of London. Série B: Ciências Biológicas, 270 (suppl_1), S96-S99.
- Ward, RD, Zemlak, TS, Innes, BH, Last, PR e Hebert, PD (2005). DNA barcoding espécies de peixes da Austrália. Transações Filosóficas da Royal Society B: Ciências Biológicas, 360 (1462), 1847-1857.

- Moritz C and Cicero C (2004) DNA barcoding: Promises and pitfalls. PLoS Biol 2:1529-1534.
- DeSalle, R., Egan, M. G., & Siddall, M. (2005). The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philosophical transactions of the royal society B: Biological sciences, 360(1462), 1905-1916.
- Buhay, J. E. (2009). "COI-like" sequences are becoming problematic in molecular systematic and DNA barcoding studies. Journal of crustacean biology, 29(1), 96-110.
- 53. Hoareau, TB, & Boissin, E. (2010). Projeto de primers híbridos específicos do filo para código de barras de DNA: abordando a necessidade de amplificação eficiente de COI em Echinodermata. Recursos de ecologia molecular, 10 (6), 960-967.
- Carugati, L., Melis, R., Cariani, A., Cau, A., Crobe, V., Ferrari, A., ... & Cannas, R. (2022). Combined COI barcode-based methods to avoid mislabelling of threatened species of deep-sea skates. *Animal Conservation*, 25(1), 38-52.
- 55. Toffoli, D., Hrbek, T., Araújo, M. L. G. D., Almeida, M. P. D., Charvet-Almeida, P., & Farias, I. P. (2008). A test of the utility of DNA barcoding in the radiation of the freshwater stingray genus Potamotrygon (Potamotrygonidae, Myliobatiformes). *Genetics and Molecular Biology*, *31*, 324-336.
- 56. Will, K. W., Mishler, B. D., & Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic biology, 54(5), 844-851.
- 57. Gibbs, J. (2009). Integrative taxonomy identifies new (and old) species in the Lasioglossum (Dialictus) tegulare (Robertson) species group (Hymenoptera, Halictidae). Zootaxa, 2032(1), 1-38.
- 58. Schlick-Steiner, B. C., Steiner, F. M., Seifert, B., Stauffer, C., Christian, E., & Crozier, R. H. (2010). Integrative taxonomy: a multisource approach to exploring biodiversity. Annual review of entomology, 55, 421-438.
- Ruocco, N. L., Lucifora, L. O., de Astarloa, J. D., Mabragaña, E., & Delpiani, S. M. (2012). Morphology and DNA barcoding reveal a new species of eagle ray from the southwestern Atlantic: Myliobatis ridens sp. nov.(Chondrichthyes: Myliobatiformes: Myliobatidae). *Zoological Studies*, *51*(6), 862-873.

DADOS SUPLEMENTARES

Dados Suplementares 1: Medidas morfométricas dos exemplares de *Potamotrygon motoro*.

	Média Total	Média Machos	Média Fêmeas
Comprimento Total	605.051	467.222	723.19
Largura do Disco	356.128	275.389	425.333
Largura do Disco aos Olhos	313.077	241	374.857
Largura do Disco na Origem das Nadadeiras Pélvicas	288.59	218.778	348.429
Comprimento do Disco	379.385	295.5	451.286
Comprimento Interno do Disco	333.744	253.222	402.762
Comprimento do Olho	14.3077	10.5	17.5714
Comprimento Espiracular	23.2308	18.3889	27.381
Largura Interocular	64.7105	47.1667	80.5
Largura Interespiracular	69.4872	54.1111	82.6667
Comprimento Pré-Ocular	95.1842	73.2222	114.95
Largura da Cauda na Base	41.2821	34.8333	46.8095
Largura da Cauda no Espinho	16.3057	13.6667	18.285
Altura da Cauda na Base	24.4737	19.3889	29.05

	1	1	1
Comprimento do Ferrão	62.4167	41.7	77.2143
Boca Escapulocoracoide	115	90.2222	136.238
Boca Cloaca	235.821	181.556	282.333
Boca 10 Fenda Branquial	55.2308	44.7778	64.1905
Focinho 1o Fenda Branquial	130.103	105.833	150.905
Cloaca ao Ferrão Caudal	179.629	136.4	212.05
Comprimento Pré-Cloacal	310.641	239.944	371.238
Comprimento da Abertura Cloacal	23.3333	15	30.4762
Comprimento Pré-Oral	74.0769	58.8333	87.1429
Comprimento Pré-Narial	59	45.5556	70.5238
Comprimento do Cesto Branquial (=10 a 50 Fendas Branquiais)	57.641	45	68.4762
Largura do Cesto Branquial (=Largura entre 10' s Fendas Branquiais)	95.5641	73.0556	114.857
Largura da Boca	41.2051	31.1667	49.8095
Comprimento da Narina	18.9487	13.2222	23.8571
Largura Internarial	29.4615	25.0556	33.2381
Comprimento da Cauda	280.083	226.188	323.2
Largura da Nadadeira Pélvica (=Largura da Margem Posterior da Pélvica)	96.8462	67.6667	121.857

Comprimento da Nadadeira Pélvica (=Comprimento da Margem Anterior da Pélvica)	87.9231	68.5	104.571
Comprimento da Base da Nadadeira Pélvica	84.4103	64.0556	101.857
Comprimento do Clasper	55.7222	55.7222	
Comprimento da Cauda Desde a Margem Posterior do Disco à Inserção do Espinho	149.457	118.067	173
Comprimento Pré-Pélvico	292.462	221	353.714
Comprimento da Cauda (Cloaca)	286.971	229.467	330.1
Número de Espinhos na Cauda	21.1563	21.1429	21.1667
Número de dentes Arcada Superior	41.75	38.6667	43.6
Número de dentes Arcada Inferior	43.4167	42.7778	43.8

Dados suplementares 2: Códigos, número de sequencias, localidade número de voucher e código de acesso genbank das sequencias de COI utilizadas no presente estudo.

Cod	n	Especie	Localidade	Voucher	Genbank
Hego_Ja88	1	Heliotrygon gomesi	Rio Javari	TA06-17/MZUSP 104988	MW475991
Hego_Na38	2	Heliotrygon gomesi	Rio Nanay	PU09-33/MZUSP 108203	MW475912
Hero_Am01	3	Heliotrygon rosai	Rio Amazonas	PU09-05/MZUSP 108201	MW475898
Hero_Na02	4	Heliotrygon rosai	Rio Nanay Beach across from Nauta,	PU09-19/MZUSP 108202	MW475902
Paai_Pe74	5	Paratrygon aiereba	Loreto, Peru	NL 00710/INHS 52174	MW475843
Paai_MD59	6	Paratrygon aiereba	Madre de Dios Nanay, Iquitos,	PU-10/MZUSP 117159	MW475923
Paai_Na08	7	Paratrygon aiereba	Peru	NL 12008/ROM ####	MW475870
Paai_Ag89	8	Paratrygon aiereba	Rio Araguaia Rio Arari-	TO05-01/MZUSP 104389	MW476012
Paai_Ar15	9	Paratrygon aiereba	Marajo	BR96-115	MW475722
Paai_RB46	10	Paratrygon aiereba	Rio Branco Rio Iriri,	AM07-29/MZUSP 104646	MW475767
Paai_Ir08	11	Paratrygon aiereba	Altamira	ROM T15254/INPA 30808	MW475976

Paai_Ja98	12	Paratrygon aiereba	Rio Javari	TA06-14/MZUSP 10498	MW475989
Paai_Ju04	13	Paratrygon aiereba	Rio Jutai	JU12-04	MW475809
Paai_Ne57	14	Paratrygon aiereba	Rio Negro Rio Rupunini,	RN04-57	MW475930
Paai_Ru04	15	Paratrygon aiereba	Guyana	NL 01842/AUM 35504	MW475847
Paai_Tj07	16	Paratrygon aiereba	Rio Tapajos	TJ05_14/MZUSP 103907	MW475998
Paai_Ta82	17	Paratrygon aiereba	Rio Tarauaca	AC06-093/MZUSP 116082	MW475750
Paai_To26	18	Paratrygon aiereba	Rio Tocantins	BR96-126	MW475724
Paai_Xi44	19	Paratrygon aiereba	Rio Xingu Rio Grande - Delta of	TO05-79/MZUSP 104444	MW476038
Paor_RG86	20	Paratrygon orinocoensis	Orinoco Rio Grande - Delta of	VZ13-86	MW476060
Paor_RG87	21	Paratrygon orinocoensis	Orinoco	VZ13-87	MW476061
Papa_CT21	22	Paratrygon parvaspina	Cano Tomo	VZ13-21	MW476056
Papa_CT58	23	Paratrygon parvaspina	Cano Tomo Rio Tocantins-	VZ13-22/MZUSP 117836/MCNG 56458	MW476057
Pliw_To04	24	Plesiotrygon iwamae	Marajo Rio Tocantins-	PA03-104	MW475874
Pliw_To05	25	Plesiotrygon iwamae	Marajo	PA03-105	MW475875
Plna_It77	26	Plesiotrygon nana	Rio Itaya	PU09-45/MZUSP 108777	MW475921
Poad_RB45	27	Potamotrygon adamastor	Rio Branco	AM07-37/MZUSP 104654	MW475775
Poad_RB57	28	Potamotrygon adamastor	Rio Branco	AM07-40/MZUSP 104657	MW475778
Poal_Tj18	29	Potamotrygon albimaculata Potamotrygon	Rio Tapajos	TJ05_33/MZUSP 103918	MW476007
Poal_Tp03	30	albimaculata	Rio Teles Pires	MT05-03	MW475831
Poam_Mu11	31	Potamotrygon amandae	Rio Mutum	AC06-017/MZUSP 111911	MW475740
Poam_Na75	32	Potamotrygon amandae	Rio Nanay	PU09-32/MZUSP 110875	MW475911
Poam_Pg05	33	Potamotrygon amandae	Rio Paraguai	BZ-01/MZUSP 110905	MW475791
Poam_Pr916	34	Potamotrygon amandae	Rio Parana	BZ-15/MZUSP 111916	MW475798
PcfamAm59	35	Potamotrygon cf amandae	Rio Amazonas	PU09-01/MZUSP 110849	MW475894
PcfamAm60	36	Potamotrygon cf amandae	Rio Amazonas	PU09-02/MZUSP 110850	MW475895
Poaz_Ju05	37	Potamotrygon amazona	Rio Jutai	JU12-05	MW475810
Poaz_Ju46	38	Potamotrygon amazona	Rio Jutai Apoera, Corantiine	JU12-12/MZUSP 117346	MW475813
Pobo_Cr26	39	Potamotrygon boesemani	River, Surinam Corantiine	NL 11826/ROM #####	MW475863
Pobo_Cr69	40	Potamotrygon boesemani	River	NL 10800/ROM 091269	MW475862
Pobr_Mu24	41	Potamotrygon brachyura	Rio Mutum	AC06-004/MZUSP 104224	MW475738
Pobr_Ur90	42	Potamotrygon brachyura	Rio Uruguai	UR05-01/MZUSP 104990	MW476043
Pofa_Ap42	43	Potamotrygon falkneri	Rio Apa	BR96-42	MW475733
Pofa_Pg44	44	Potamotrygon falkneri	Rio Paraguai	BZ-02/MZUSP 117244	MW475792
Pofa_Pr	45	Potamotrygon falkneri	Rio Parana	BZ-21/MZUSP 106257	MW475800
Pofa_Sa32	46	Potamotrygon falkneri	Rio Salobra	MS04-32	MW475826

PcffaNa22	47	Potamotrygon cf falkneri Potamotrygon cf	Rio Nanay	NL 10114/ROM 103022	MW475857
PcfhuNa21	48	humerosa Botamotrygon of	Rio Nanay	NL 10115/ROM 103021	MW475858
PcfhuNa19	49	humerosa	Rio Nanay	NL 10117/ROM 103019	MW475860
Pomo_CM88	50	Potamotrygon motoro	Cano Mesetas	VZ13-08/MZUSP 117288	MW476050
Pomo_Am51	51	Potamotrygon motoro	Rio Amazonas Rio Arari-	PU09-03/MZUSP 110851	MW475896
Pomo_Ar56	52	Potamotrygon motoro	Marajo	PA03-22/MZUSP 106656	MW475879
Pomo_It73	53	Potamotrygon motoro	Rio Itaya	PU09-26/MZUSP 110873	MW475905
Pomo_Ju40	54	Potamotrygon motoro	Rio Jutai	JU12-02/MZUSP 117340	MW475807
Pomo_Mu03	55	Potamotrygon motoro	Rio Mutum	AC06-001/MZUSP 111903	MW475736
Pomo_Na19	56	Potamotrygon motoro	Rio Nanay	NL 10118/ROM 103018	MW475861
Pomo_Ne48	57	Potamotrygon motoro	Rio Negro	BR96-148	MW475729
Pomo_Pg08	58	Potamotrygon motoro	Rio Paraguai	BZ-05/MZUSP 110908	MW475795
Pomo_Pb53	59	Potamotrygon motoro	Rio Puinabua	PU09-09/MZUSP 110853	MW475900
Pomo_Pu42	60	Potamotrygon motoro	Rio Purus	AC06-072/MZUSP 111142	MW475745
Pomo_Sa34	61	Potamotrygon motoro	Rio Salobra	MS04-34	MW475827
Pomo_So47	62	Potamotrygon motoro	Rio Solimoes	TA06-08/MZUSP 110847	MW475987
Pomo_Tj14	63	Potamotrygon motoro	Rio Tapajos	TJ05_26/MZUSP 103914	MW476004
Pomo_Ta38	64	Potamotrygon motoro	Rio Tarauaca	AC06-102/MZUSP 111138	MW475754
Pomo_Uc86	65	Potamotrygon motoro	Rio Ucayali	PU09-21/MZUSP 11086	MW475903
Pomo_Xi53	66	Potamotrygon motoro	Rio Xingu Parguaza, Laguna Guacamaya,	ROM T07146/ROM 086535	5 MW475971
PcfmoGc00	67	Potamotrygon cf motoro	Venezuela	NL 02600	MW475849
PcfmoAb43	68	Potamotrygon cf motoro	Rio Abacaxis	AM07-05/MZUSP 110843	MW475758
PcfmoMu69	69	Potamotrygon cf motoro	Rio Mutum	AC06-018/MZUSP 117169	MW475741
PcfmoPr26	70	Potamotrygon cf motoro	Rio Parana	BZ-26	MW475801
PcfmoSo33	71	Potamotrygon cf motoro	Rio Solimoes	TA06-02/MZUSP 117833	MW475982
PcfmoTj97	72	Potamotrygon cf motoro	Rio Tapajos	TJ05_03/MZUSP 103897	MW475993
PcfmoTi43	73	Potamotrygon cf motoro	Rio Tigre	PU09-42/MZUSP 110884	MW475918
Pcf2moSa1	74	Potamotrygon cf2 motoro	Rio Salobra	MS04-01	MW475816
Pcf2moSa4	75	Potamotrygon cf2 motoro	Rio Salobra	MS04-04	MW475818
PcforRB50	76	Potamotrygon cf orbignyi	Rio Branco	AM07-33/MZUSP 104650	MW475771
PcforJu45	77	Potamotrygon cf orbignyi Potamotrygon cf	Rio Jutai Rio Ventuari,	JU12-11/MZUSP 117345	MW475812
PcfsdVe82	79	schroederi	Venezuela	ROM T09542/AUM 54482	MW475975
PcfscNa20	80	Potamotrygon cf scobina	Rio Nanay	NL 10116/ROM 103020	MW475859
Poga_To52	81	Potamotrygon garmani	Rio Tocantins	TO05-17/UNT 7152	MW476023
Poga_To57	82	Potamotrygon garmani	Rio Tocantins	TO05-22/UNT 7157	MW476026
Pohe_Ag35	83	Potamotrygon henlei	Rio Araguaia	TO05-70/MZUSP 104435	MW476037
Pohe_To27	84	Potamotrygon henlei	Rio Tocantins	BR96-127	MW475725
Pohi_Sa02	85	Potamotrygon histrix	Rio Salobra	MS04-02	MW475817

Pohi_Sa35	86	Potamotrygon histrix	Rio Salobra	MS04-09/MZUSP 117235	MW475821
Pohu_Ab42	87	Potamotrygon humerosa	Rio Abacaxis	AM07-21/MZUSP 104642	MW475759
Pohu_To13	88	Potamotrygon humerosa	Rio Tapajos	TJ05_23/MZUSP 103913	MW476002
Poja_Ja17	89	Potamotrygon jabuti	Rio Jamanxim	[MT05-22/MZUSP 105017	MW475834
Poja_Tj02	90	Potamotrygon jabuti	Rio Tapajos	TJ05_32/MZUSP 117802 MT05-01/MZUSP	MW476006
Poja_Tp35	91	Potamotrygon jabuti	Rio Teles Pires	105000/104999	MW475830
Pole_Xi35	92	Potamotrygon leopoldi	Rio Xingu	BR96-135	MW475728
Pole_Xi68	93	Potamotrygon leopoldi	Rio Xingu	TO05-68	MW476036
Poli_Ja31	94	Potamotrygon limai	Rio Jamari	AC06-025/MZUSP 104031	MW475742
Poli_Ja28	95	Potamotrygon limai	Rio Jamari	AC06-028/MZUSP 104231	MW475743
Poma_Ml27	96	Potamotrygon magdalenae	Rio Magdalena Rio Marowijne	NL 03170/IAvHP-7427	MW475853
Pomn_Mn27	97	Potamotrygon marinae	Surinam Rio Marowijne,	NL 11827/ROM #####	MW475864
Pomn_Mn28	98	Potamotrygon marinae	Surinam	NL 11828/ROM #####	MW475865
Pomq_Ta92	99 10	Potamotrygon marquesi	Rio Tarauaca	AC06-088/MZUSP 117792	MW475748
Pomq_Ta86	0 10	Potamotrygon marquesi	Rio Tarauaca Demerara	AC06-090/MZUSP 117786	MW475749
Posp_De5a	1 10	Potamotrygon nsp	River Demerara	NL 10110/ROM 103015a	MW475855
Posp_De5b	2	Potamotrygon nsp	River Casiquiare,	NL 10111/ROM 103015b	MW475856
Poor_Ca01	10 3	Potamotrygon orbignyi	Piedras Perro, Venezuela Demerara-	NL 02601/#####	MW475850
Poor_De3a	10 4 10	Potamotrygon orbignyi	Mahaica, Guyana	ROM 120846/ROM 100073a	MW475980
Poor_An40	10 5 10	Potamotrygon orbignyi	Rio Agua Mena	VZ13-01/MCNG 56440	MW476048
Poor_Am60	6 10	Potamotrygon orbignyi	Rio Amazonas	PU09-04/MZUSP 117260	MW475897
Poor_Ag07	7 10	Potamotrygon orbignyi	Rio Araguaia Rio Berbice,	TO05-38/MZUSP 104407	MW476032
Poor_Be30	8 10	Potamotrygon orbignyi	Guyana	ROM T08127/ROM 088630	MW475972
Poor_RB57	9 11	Potamotrygon orbignyi	Rio Branco Rio Grande - Delta of	AM07-23/MZUSP 104643	MW475761
Poor_RG57	0	Potamotrygon orbignyi	Orinoco	VZ13-57	MW476058
Poor_Ja89	1 11	Potamotrygon orbignyi	Rio Javari	TA06-18/MZUSP 104989	MW475992
Poor_Ju43	2 11	Potamotrygon orbignyi	Rio Jutai	JU12-08/MZUSP 117343	MW475811
Poor_Na64	3 11	Potamotrygon orbignyi	Rio Nanay	PU09-46/MZUSP 117264	MW475922
Poor_Ne38	4 11	Potamotrygon orbignyi	Rio Negro Rio Rupunini,	BR96-151/UFBP 3538 NL 01843/ANSP	MW475730
Poor_Ru06	5 11	Potamotrygon orbignyi	Guyana	178739/AUM 35506	MW475848
Poor_Tj06	6	Potamotrygon orbignyi	Rio Tapajos	TJ05_13/MZUSP 103906	MW475997

	11				
Poor_Ta28	7 11	Potamotrygon orbignyi	Rio Tarauaca	AC06-094/MZUSP 104028	MW475751
Poor_To28	8 11	Potamotrygon orbignyi	Rio Tocantins	BR96-128	MW475726
Poor_To75	9	Potamotrygon orbignyi	Marajo Dio Tuonnido	PA03-61/MZUSP 104275	MW475883
Poor_Tu89	12 0 12	Potamotrygon orbignyi	Venezuela	ROM T08998/AUM 53789	MW475974
Poor_Xi46	1	Potamotrygon orbignyi Potamotrygon	Rio Xingu	TO05-81/MZUSP 104446	MW476039
Popa_Pg18	12 2	pantanensis	Rio Paraguai	MT07-03/MZUSP 110918	MW475837
Popa_Pg23	12 3	pantanensis	Rio Paraguai	MT07-08/MZUSP 110923	MW475842
Pore_To51	12 4 12	Potamotrygon rex	Rio Tocantins	TO05-16/UNT 7151	MW476022
Pore_To58	12 5 12	Potamotrygon rex	Rio Tocantins	TO05-23/UNT 7158	MW476027
Posc_CT55	12 6 12	Potamotrygon schroederi	Cano Tomo	VZ13-18/MCNG 56455	MW476053
Posc_Ne13	12 7 12	Potamotrygon schroederi	Rio Negro	108455/117813	MW475926
Posb_Gu32	12 8 12	Potamotrygon scobina	Rio Guama	BR96-125/UFBP 3532	MW475723
Posb_To00	12 9	Potamotrygon scobina	Marajo	PA03-100	MW475873
Posb_So42	15 0	Potamotrygon scobina	Solimoes	BR96-169/UFBP 3542	MW475731
Posi_Pb59	15 1 12	Potamotrygon signata	Rio Parnaiba	BR96-59	MW475734
Posi_Pb33	15 2 13	Potamotrygon signata	Rio Parnaiba Rio Arari	PA07-88/MZUSP 104233	MW475888
Posp_Ar47	13 3 12	Potamotrygon sp (mar 1)	Marajo	PA03-12/MZUSP 106647	MW475877
Posp_Ae43	13 4 13	Potamotrygon sp (or 1)	Rio Apure	VZ11-29/MCNG 56343	MW476046
Posp_Na61	13 5 12	Potamotrygon sp (pu 1)	Rio Nanay	PU09-29/MZUSP 117261	MW475908
Posp_Ag03	13 6 12	Potamotrygon sp (toc 3)	Rio Araguaia	TO05-34/MZUSP 104403	MW476030
Posp_To56	13 7 12	Potamotrygon sp (toc 3)	Rio Tocantins	TO05-21/UNT 7156	MW476025
Posp_Ag16	13 8 12	Potamotrygon sp (toc 4)	Rio Araguaia	TO05-47/MZUSP 104416	MW476034
Posp_Tj41	15 9	Potamotrygon sp (tpj 3)	Rio Tapajos	TJ05_11/MZUSP 110841	MW475996
Posp_CM48	14 0	Potamotrygon sp	Cano Mesetas Demerara-	VZ13-11/MCNG 56448	MW476052
Posp_De93	14 1	Potamotrygon sp	Mahaica, Guyana Potaro- Siparuni, Rio	ROM T20689/ROM 100993	3 MW475979
Posp_Es10	14 2	Potamotrygon sp	Essequibo, Guyana	ROM T18145/ROM 097210	MW475977
Posp_Ci31	14 3	Potamotrygon sp	Rio Cinacuro, Venezuela	NL 00931	MW475845
Posp_Ju39	14 4	Potamotrygon sp	Rio Jutai	JU12-01/MZUSP 117339	MW475806

	14		Rio Moruka,		
Posp_Mo41	5	Potamotrygon sp	Guyana	ROM T08361/ROM 087343	1 MW475973
Posn Na10	14 6	Potamotrygon sp	Rio Nanav	PU09-28/MZUSP 117210	MW475907
1059_11010	14	i olanon ygon sp	itio i tunuy	1009 20/02001 11/210	111111113901
Posp_Pr46	7	Potamotrygon sp	Rio Parana	BZ-18/MZUSP 117246	MW475799
	14		Rio Rupunini,	ROM T06650/ROM	
Posp_Ru8a	8	Potamotrygon sp	Guyana	086428a	MW475966
-	14	_			
Posp_So80	9	Potamotrygon sp	Rio Solimoes	TA06-05/MZUSP 104980	MW475985
Deer. T. 50	15		Tocantins-	DA 02 05 MIZLIOD 117250	NIXIA75007
Posp_1059	15	Potamotrygon sp	Marajo	PA05-95/MZUSP 11/259	MW4/388/
Pota MD73	1	Potamotrygon tatianae	Madre de Dios	PU-23/MZUSP 107673	MW475924
_	15	20			
Poti_Na97	2	Potamotrygon tigrina	Rio Nanay	NL 01230/CU 78497	MW475846
	15				
Posp_Ne62	3	Potamotrygon wallacei	Rio Negro	RN04-07/MZUSP 104962	MW475925
	15				
Posp_Ne94	4	Potamotrygon wallacei	Rio Negro	RN04-19/MZUSP 116094	MW475928
	15		Lago		
Poye_LM17	5	Potamotrygon yepezi	Maracaibo	VZ11-02/MCNG 56317	MW476045
	15		Lago		
Poye_LMi1	6	Potamotrygon yepezi	Maracaibo	NL_Pyepezi1	MW475871
Hfai		Himantura fai			KC970331
Bimb		Brevitrygon imbricata		CEW139	KU317892